
The Viking Battle - Part 1 2023 - Solutions

Problem 1 Let k ≥ 2 be an interger. Find the smallest integer n ≥ k + 1 with
the property that there exists a set of n distinct real numbers such that each of its
elements can be written as a sum of k other distinct elements of the set.

Solution to problem 1

Answer: n = k + 4.

First we show that n ≥ k + 4. Suppose that there exists such a set with n numbers
a1 < a2 < · · · < an.

Note that in order to express a1 as a sum of k distinkt elements of the set, we must
have a1 ≥ a2 + · · ·+ak+1 and, similarly for an, we must have an−k + · · ·+an−1 ≥ an.

If n = k+1 then a1 ≥ a2+· · ·+an > a1+· · ·+an−1 ≥ an, which is a contradiction.
If n = k + 2 then a1 ≥ a2 + · · ·+ an−1 ≥ an, which is also a contradiction.
If n = k + 3 then we have a1 ≥ a2 + · · ·+ an−2 and a3 + · · ·+ an−1 ≥ an, Adding

the two inequalities we get a1 + an−1 ≥ a2 + an, again a contradiction.
It remains to give an example of a set with k+4 element satisfying the condition.

We start with the even case n = 2m: Consider the set

S = {−m,−(m− 1), . . . ,−2,−1, 1, 2, . . . ,m− 1,m},

and remember that m ≥ 3. If s ∈ S\{−m, 1, 2}, then s = (s− 1) + 1. We now add
2(m − 3) elements from the set, such that their sum is zero, and this can be done
since we have m − 3 untouched pairs ±l from the set. Similarly if s ∈ {−m, 1, 2},
then s = (s + 1) + (−1) and we add 2(m− 3) elements from the set as before.

In the odd case n = 2m + 1, we just add 0 to the set S and to all sums, except
when we want k numbers with sum 0. It is easy to see that the set contains k different
numbers with sum 0. This shows that n = k + 4.

1



Problem 2 Let P be the set of all primes. Find all positive integers n such that
n! divides ∏

p<q≤n
p,q∈P

(p + q).

Solution to problem 2

Answer: This only holds for n = 7.

Assume that n! divides ∏
p<q≤n

(p + q),

and let 2 = p1 < p2 < . . . < pm ≤ n be the primes less than or equal to n.
Now pi divides n! for all i = 1, 2, . . . ,m. In particular pm | pi + pj for some primes
pi < pj ≤ pm, and hence pm = pi+pj, which implies m ≥ 3, pi = 2 and pm = 2+pm−1.

Similarly pm−1 | pl + pk for some pl < pk ≤ m, and

0 <
pk + pl
pm−1

≤ pm−1 + pm
pm−1

=
2pm−1 + 2

pm−1

< 3.

Hence pm−1 = pl + pk or 2pm−1 = pl + pk. As above, pm−1 = pl + pk gives pm−1 =
2 + pm−2. If 2pm−1 = pl + pk, then pm−1 < pk, so pk = pm and

2pm−1 = pl + pm = pl + pm−1 + 2 ⇒ pm−1 = pl + 2 = pm−2 + 2.

Either way, pm−2 > 2 and 3 divides one of the primes pm−2, pm−1, pm. Hence pm−2 =
3, pm−1 = 5 and pm = 7. Now 7 ≤ n < 11. Notice that∏

p<q≤7

(p + q) = (2 + 3)(2 + 5)(2 + 7)(3 + 5)(3 + 7)(5 + 7) = 26 · 33 · 52 · 7,

which is divisible by 7! = 24 · 32 · 5 · 7, but not 8! = 27 · 32 · 5 · 7. Thus n = 7 is the
only positive integer for which the condition holds.
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Problem 3 Let n be a positive integer. We start with n piles of pebbles, each
initially containing a single pebble. One can perform moves of the following form:
Choose two piles, take an equal number of pebbles from each pile and form a new
pile out of these pebbles. For each positive integer n, find the smallest number of
non-empty piles that one can obtain by performing a finite sequence of moves of this
form.

Solution to problem 3

Answer: If n is a power of 2, the answer is one pile. Otherwise it is two piles.

Since we can always combine two plies of 2k pebbles each to a pile of 2k+1 pebbles,
it is easy to see that for n = 2m:

2m piles of 1 pebble→ 2m−1 piles of 2 pebbles→ · · · →
2 piles of 2m−1 pebbles→ 1 pile of 2m pebbles.

Assume that n is not a power of 2. First we prove that it is possible to make 2
piles. Choose N such that 2N < n < 2N+1. Let m = n− 2N . Then 0 < m < 2N and
we can make two piles like this:

2N + m piles of 1 pebble→
1 pile of 2N pebbles and m piles of 1 pebble→
1 pile of 2N − 1 pebbles, m− 1 piles of 1 pebble and 1 pile of 2 pebbles→
1 pile of 2N − 2 pebbles, m piles of 1 pebble and 1 pile of 2 pebbles→
· · · →
1 pile of m pebbles, 2N − 2 piles of 1 pebble and 1 pile of 2 pebbles→
1 pile of m pebbles and 2N−1 piles of 2 pebbles→
1 pile of m pebbles and 1 pile of 2N pebbles.

To finish the proof, we show that if n is not a power of 2, then it is not possible
to make one pile. In one move we take c pebbles from two piles containing a and b
pebbles, respectively:

a→ a− c, b→ b− c, 0→ 2c.

If an odd number m divides the number of pebbles in each pile after the move,
then m divides c and hence m also divides a and b. Hence if m is an odd number
that divides the number of pebbles in each pile, then m also divided the number of
pebbles in each pile in any previous position. If n is not a power of 2, it has an odd
divisor m > 1. If it was possible to end with one pile of n pebbles, then m would
divide the number of pebbles in any previous pile, and hence m would divide 1, a
contradiction.
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