## The Viking Battle - Part 12023 - Solutions

Problem 1 Let $k \geq 2$ be an interger. Find the smallest integer $n \geq k+1$ with the property that there exists a set of $n$ distinct real numbers such that each of its elements can be written as a sum of $k$ other distinct elements of the set.

## Solution to problem 1

Answer: $n=k+4$.
First we show that $n \geq k+4$. Suppose that there exists such a set with $n$ numbers $a_{1}<a_{2}<\cdots<a_{n}$.

Note that in order to express $a_{1}$ as a sum of $k$ distinkt elements of the set, we must have $a_{1} \geq a_{2}+\cdots+a_{k+1}$ and, similarly for $a_{n}$, we must have $a_{n-k}+\cdots+a_{n-1} \geq a_{n}$.

If $n=k+1$ then $a_{1} \geq a_{2}+\cdots+a_{n}>a_{1}+\cdots+a_{n-1} \geq a_{n}$, which is a contradiction.
If $n=k+2$ then $a_{1} \geq a_{2}+\cdots+a_{n-1} \geq a_{n}$, which is also a contradiction.
If $n=k+3$ then we have $a_{1} \geq a_{2}+\cdots+a_{n-2}$ and $a_{3}+\cdots+a_{n-1} \geq a_{n}$, Adding the two inequalities we get $a_{1}+a_{n-1} \geq a_{2}+a_{n}$, again a contradiction.

It remains to give an example of a set with $k+4$ element satisfying the condition. We start with the even case $n=2 m$ : Consider the set

$$
S=\{-m,-(m-1), \ldots,-2,-1,1,2, \ldots, m-1, m\}
$$

and remember that $m \geq 3$. If $s \in S \backslash\{-m, 1,2\}$, then $s=(s-1)+1$. We now add $2(m-3)$ elements from the set, such that their sum is zero, and this can be done since we have $m-3$ untouched pairs $\pm l$ from the set. Similarly if $s \in\{-m, 1,2\}$, then $s=(s+1)+(-1)$ and we add $2(m-3)$ elements from the set as before.

In the odd case $n=2 m+1$, we just add 0 to the set $S$ and to all sums, except when we want $k$ numbers with sum 0 . It is easy to see that the set contains $k$ different numbers with sum 0 . This shows that $n=k+4$.

Problem 2 Let $P$ be the set of all primes. Find all positive integers $n$ such that $n$ ! divides

$$
\prod_{\substack{p<q \leq n \\ p, q \in P}}(p+q)
$$

## Solution to problem 2

Answer: This only holds for $n=7$.
Assume that $n$ ! divides

$$
\prod_{p<q \leq n}(p+q)
$$

and let $2=p_{1}<p_{2}<\ldots<p_{m} \leq n$ be the primes less than or equal to $n$. Now $p_{i}$ divides $n$ ! for all $i=1,2, \ldots, m$. In particular $p_{m} \mid p_{i}+p_{j}$ for some primes $p_{i}<p_{j} \leq p_{m}$, and hence $p_{m}=p_{i}+p_{j}$, which implies $m \geq 3, p_{i}=2$ and $p_{m}=2+p_{m-1}$.

Similarly $p_{m-1} \mid p_{l}+p_{k}$ for some $p_{l}<p_{k} \leq m$, and

$$
0<\frac{p_{k}+p_{l}}{p_{m-1}} \leq \frac{p_{m-1}+p_{m}}{p_{m-1}}=\frac{2 p_{m-1}+2}{p_{m-1}}<3
$$

Hence $p_{m-1}=p_{l}+p_{k}$ or $2 p_{m-1}=p_{l}+p_{k}$. As above, $p_{m-1}=p_{l}+p_{k}$ gives $p_{m-1}=$ $2+p_{m-2}$. If $2 p_{m-1}=p_{l}+p_{k}$, then $p_{m-1}<p_{k}$, so $p_{k}=p_{m}$ and

$$
2 p_{m-1}=p_{l}+p_{m}=p_{l}+p_{m-1}+2 \Rightarrow p_{m-1}=p_{l}+2=p_{m-2}+2
$$

Either way, $p_{m-2}>2$ and 3 divides one of the primes $p_{m-2}, p_{m-1}, p_{m}$. Hence $p_{m-2}=$ $3, p_{m-1}=5$ and $p_{m}=7$. Now $7 \leq n<11$. Notice that

$$
\prod_{p<q \leq 7}(p+q)=(2+3)(2+5)(2+7)(3+5)(3+7)(5+7)=2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7
$$

which is divisible by $7!=2^{4} \cdot 3^{2} \cdot 5 \cdot 7$, but not $8!=2^{7} \cdot 3^{2} \cdot 5 \cdot 7$. Thus $n=7$ is the only positive integer for which the condition holds.

Problem 3 Let $n$ be a positive integer. We start with $n$ piles of pebbles, each initially containing a single pebble. One can perform moves of the following form: Choose two piles, take an equal number of pebbles from each pile and form a new pile out of these pebbles. For each positive integer $n$, find the smallest number of non-empty piles that one can obtain by performing a finite sequence of moves of this form.

## Solution to problem 3

Answer: If $n$ is a power of 2 , the answer is one pile. Otherwise it is two piles.
Since we can always combine two plies of $2^{k}$ pebbles each to a pile of $2^{k+1}$ pebbles, it is easy to see that for $n=2^{m}$ :

$$
\begin{aligned}
& 2^{m} \text { piles of } 1 \text { pebble } \rightarrow 2^{m-1} \text { piles of } 2 \text { pebbles } \rightarrow \cdots \rightarrow \\
& 2 \text { piles of } 2^{m-1} \text { pebbles } \rightarrow 1 \text { pile of } 2^{m} \text { pebbles. }
\end{aligned}
$$

Assume that $n$ is not a power of 2 . First we prove that it is possible to make 2 piles. Choose $N$ such that $2^{N}<n<2^{N+1}$. Let $m=n-2^{N}$. Then $0<m<2^{N}$ and we can make two piles like this:
$2^{N}+m$ piles of 1 pebble $\rightarrow$
1 pile of $2^{N}$ pebbles and $m$ piles of 1 pebble $\rightarrow$
1 pile of $2^{N}-1$ pebbles, $m-1$ piles of 1 pebble and 1 pile of 2 pebbles $\rightarrow$
1 pile of $2^{N}-2$ pebbles, $m$ piles of 1 pebble and 1 pile of 2 pebbles $\rightarrow$
$\cdots \rightarrow$
1 pile of $m$ pebbles, $2^{N}-2$ piles of 1 pebble and 1 pile of 2 pebbles $\rightarrow$
1 pile of $m$ pebbles and $2^{N-1}$ piles of 2 pebbles $\rightarrow$
1 pile of $m$ pebbles and 1 pile of $2^{N}$ pebbles.
To finish the proof, we show that if $n$ is not a power of 2 , then it is not possible to make one pile. In one move we take $c$ pebbles from two piles containing $a$ and $b$ pebbles, respectively:

$$
a \rightarrow a-c, \quad b \rightarrow b-c, \quad 0 \rightarrow 2 c
$$

If an odd number $m$ divides the number of pebbles in each pile after the move, then $m$ divides $c$ and hence $m$ also divides $a$ and $b$. Hence if $m$ is an odd number that divides the number of pebbles in each pile, then $m$ also divided the number of pebbles in each pile in any previous position. If $n$ is not a power of 2 , it has an odd divisor $m>1$. If it was possible to end with one pile of $n$ pebbles, then $m$ would divide the number of pebbles in any previous pile, and hence $m$ would divide 1 , a contradiction.

