Problem 1 Let ABCD be a parallelogram such that AC' = BC. A point P
is chosen on the extension of the segment AB beyond B. The circumcircle of the
triangle AC'D meets the segment PD again at (), and the circumcircle of the triangle
APQ meets the segment PC' again in R. Prove that the lines CD, AQ and BR are

concurrent.

Solution to problem 1
Common remarks. The introductory steps presented here are used in all solutions below.
Since AC = BC = AD, we have LABC = /BAC = LACD = ZADC. Since the
quadrilaterals APRQ) and AQCD are cyelic, we obtain
ZCRA = 180" — LARP = 180" — LAQP = /DQA = /DCA = LCBA,
so the points A, B, C, and R lie on some circle 4.
Solution 1. Iutroduce the point X = AQ ~ CD: we need to prove that B, R and X are

collinear.

By means of the circle (APRQ) we have
/ZROQX =180° — ZAQR = /RPA = /RCX
(the last equality holds in view of AB || CD), which means that the points C. @, R, and X

also lie on some cirele 8,
Using the cireles & and v we [inally obtain

LXRC = £XQC = 180" — LCQA = LADC = £LBAC = 180° — ZCRB,

that proves the desired collinearity.




Solution 2. Let a denote the civele (APRQ). Since
LCAP = ZACD = ZAQD = 180" — ZAQP,

the line AC is tangent to a.
Now. let AD meet a again at a point Y (which necessarily lies on the extension of DA
beyond A). Using the circle 7. along with the fact that AC is tangent to a. we have

LARY = LZCAD = ZACB = ZARB,

so the points Y. B, and R are collinear,

Applying Pascal's theorem to the hexagon AAY RPQ (where AA is regarded as the tangent
to e at A), we see that the points AAn RP = C, AY n PQ = D. and YR ~ QA are collinear.
Hence the lines CD, AQ. and BR are concurrent,

Comment 1. Solution 2 consists of two parts: (1) showing that BR and DA meet on a; and (2)
showing that this vields the desired concurrency. Solution 3 also splits into those parts, but the proofs
are different.




Solution 3. As in Solution 1, we introduce the point X = AQ ~ CD and aim at proving that
the points B, R, and X are collinear. As in Solution 2, we denote a = (APQR): but now we
define ¥ to be the second meeting point of BB with a.

Using the circle o and noticing that C'D is tangent to v, we obtain

ZRYA= /RPA- /RCX = /RBC. (1)

So AY || BC, and hence Y lies on DA,
Now the chain of equalities (1) shows also that ZRY D = ZRCX, which implies that the
points C, D, Y, and R lie on some cirele 8. Hence, the lines CD, AQ, and Y BR are the

pairwise radical axes ol the eircles (AQCD). @, and B, so those lines are concurrent.,



Problem 2 Alice is given a rational number » > 1 and a line with two points
B # R, where point R contains a red bead and point B contains a blue bead. Alice
plays a solitary game by performing a sequence of moves. In every move, she chooses
a (not necessarily) positive integer k, and a bead to move. If that bead is placed at
point X, and the (Lh(;r bead is placed at point Y, then Alice moves the chosen bead
to point X’ with Y X' = Y X

Alice’s goal is to move the red bead to the point B. Find all rational numbers
r > 1 such that Alice can reach her goal in at most 2021 moves.

Solution to problem 2
Answer: Allr = (b+ 1)/bwithb=1,..., 1010.

Solution. Denote the red and blue beads by B and B, respectively,  Introduoce coordinates
on the line and identify the points with their coordinates so that B = 0 and B = 1. Then,
during the game. the coordinate of R is always smaller than the coordinate of B, Moreover,
the distance between the beads alwavs has the form rf with £ ¢ Z. since it only multiplies
by numbers of this form. Denote the valne of the distance after the m" move by d, = 7",
m=0,1,2 ... (after the 0" move we have just the initial position, so ag = 0).

If some bead i= moved in two consecutive moves, then Alice could instead perform a single
move (and change the distance from d; divectly to diea) which has the same effect as these two
moves. So. if Alice can achieve her goal, then she may as well achieve it in fewer {or the same)
number of moves by alternating the moves of B and R. In the sequel. we assume that Alice
alternates the moves, and that R is shifted altogether £ times.

If R is =hifted in the m'® move, then its coordinate increases by d, — dpy 1. Therefore, the
total increment of B's coordinate, which should be 1. eguals

t-1 £
either (do—dy) + (do—dg) + -+ (dae 2 —dp 1) = 1+ D 7% — 3 7=t
i=1 T |
£ £
or (di —da) + (dg—da) +-- -+ (do 1 — da) = 3722t =) 1%,
i=1 i=1

depending on whether R or B is shifted in the first move. Moreover, in the former case we
should have £ < 1011, while in the latter one we need £ < 10100 So both cases reduce to an
eejiation

n n—1

B 1 e e
EF = £ T 1 '3.',"}.' = z’.‘ 'I.J'.-'
=1 i=1

for some n = 1011 Thus, if Alice can reach her goal, then this equation has a solution for
n = 1011 {we ean add equal terms to both sums in order to increase n).

Conversely, if (1) has a solution for n = 1011, then Alice can compose a corresponding
sequence of distances dg, dy, da, ..., dogsy and then realise it by a sequence of moves. So the
problem reduces to the solvability of (1) for n = 1011,

Assume that. for some rational 7, there is a solution of {1). Write 7 in lowest terms as
T = g/b Substitute this into (1), multiply by the common denominator, and collect all terms
on the left hand side to get

In--1
N (1B m =0, pe{0,1,..., N, (2)
i=1

for some N = 0. We assume that there exist indices §_ and j, such that gy = 0and p; = N.



Reducing {2) modulo @ — b (=0 that a = b), we et

n-1 In-1
0= (-0 bV ® = (-1 * = -t mod (a—b).
p=1 i=1

Since ged{a — b,&) = 1. this is possible only ifa — b= 1.

Reducing {2) modulo a + b {s0 that a = —b), we get
In—-1 2n-1
0= Z (—1YampN = = E (= 1P {—1)#bp"* = §6% mod (a+ b)
i=1 i=1

for some odd (thus nonzero) § with § = 2n — 1. Since ged{a + b b) = 1. this is possible only
fa+b|S Soa+b=2n—1, and hence b=a— 1< n—1=1010.

Thus we have shown that any songht r has the form indicated in the answer. 1t remains to
show that for any b= 1,2,...,1010 and @ = b + 1, Alice can reach the goal. For this purpose,
m{l)weppt n=a, f1=M=---=F=0mdpy=m=---=g3=1

Comment 1. [nstead of reducing module 2 + 6 coe can reduce module @ and modole b The firsc
eeduction shows that the number of terms in (2) with gg = 0 iz divizible by a. while the second shows
that the numwher of terms with gy = N iz divisible by b

Notice that, io fact, N > 0. as otherwize (2] contaims an alternatiog sum of an odd oumber of

i

equal terms, which @ noneero. Therefore. all terms listed above have different indices. and there are
at least a + bof theo.

Comment 2. Aoother wav w ivisLigate the solutions of equation I:i“. ig to consider the Laurent
ol vt ial

n n-1
Lix) =% ok - ¥ o,
i-1 i-1
We can pick a sufficiently large integer d so that Pz} = IdL{I} i# a polvoemial in Fx|. Then
P1) =1, )
and
1< | P{-1)| £ 2021. 4]
If r = p/g with iotegers p > g = 1 iz a mtional pumber with the properties listed in the problem
staterent. then Plp/g) = Lip/g) = 0. As P{z) has ioteger coefficients.
ip— gqz) | Piz). Y

Plugging == 1 into (5} gives (p— g} | P{1) = 1. which implies p= g + 1. Moreover. plugging z = —1
into (5] gives (p+q) | P{—1). which. along with (4). implies p+ g £ 2021 and g £ 1010, Hence
® = (g+ 1}/q for 2ome integer g with 1 £ g < 1010,



Problem 3 A hunter and a rabbit play a game on an infinite grid. First the
hunter fixes a colouring of the cells with finitely many colours. The rabbit then
secretly chooses a cell to start in. Every minute, the rabbit reports the colour of its
current cell to the hunter, and then secretly moves to an adjacent cell that it has
not visited before (two cells are adjacent if they share a side). The hunter wins if
after some finite time either

e the rabbit cannot move; or
e the hunter can determine the cell in which the rabbit started.

Decide whether there exits a winning strategy for the hunter.

Solution to problem 3

Solution. A central idea is that several colourings Ch, Ca, ..., Ck can be merged together into
a single product colouring C1 = Cy x -+ x Cy as [ollows: the colours in the product colouring
are ordered tuples (e1, ..., ¢q) of colours, where ¢ is a colour used in Cf, so that each cell gets
a tuple consisting of its colours in the individual colourings C;. This way, any information
which can be determined [rom one of the individual colourings can also be determined from
the product colouring.

Now let the hunter merge the following colourines:
] {m ] (=)

e The first two colourinegs €y and Cs allow the tracking of the horizontal and vertical
movements of the rabbit,

The colouring Cy colours the cells according to the residue of their 2-coordinates modulo 3,
which allows to determine whether the rabbit moves left, moves right, or moves vertically.
Similarly, the colouring Cy uses the residues of the y-coordinates modulo 3, which allows
to determine whether the rabbit moves up. moves down. or moves horizontally.

e Under the condition that the rabbit’'s z-coordinate is unbounded, colouring Cy allows to
determine the exact value of the z-coordinate:

In Cy. the columns are coloured white and black so that the gaps between neighboring
black columns are pairwise distinet. As the rabbit’'s z-coordinate is unbounded, it will
eventually visit two black cells in distinct columns, With the help of colouring Cy the
hunter can cateh that moment. and determine the difference of 2-coordinates of those two
black cells, hence deducing the precise columun.

Symmetrically, under the condition that the rabbit’s y-coordinate is unbounded, there is
a colouring Cy that allows the hunter to determine the exact value of the y-coordinate,

e Finally, under the condition that the sum x + gy ol the rabbit’s coordinates is unbounded,
colouring Cy allows to determine the exact value of this sum: The diagonal lines z + y =
const are coloured black and white, so that the gaps between neighboring black diagonals
are pairwise distinet.



