The Viking Battle - Part 12019

Problem 1 Let $n \geq 3$ be an integer. Prove that there exists a set S of $2 n$ positive integers satisfying the following property: For every $m=2,3, \ldots, n$ the set S can be partitioned into two subsets such that one of these subsets has cardinality m and the sums of the elements in each subset are the same.

Problem 2 Let $A B C$ be a triangle with $A B=A C$, and let M be the midpoint of $B C$. Let P be a point such that $P B<P C$ and $P A$ parallel to $B C$. Let X and Y be points on the lines $P B$ and $P C$, respectively, so that B lies on the segment $P X$, C lies on the segment $P Y$, and $\angle P X M=\angle P Y M$. Prove that the quadrilateral $A P X Y$ is cyclic.

Problem 3 Given any set S of positive integers, show that at least one of the following two assertions holds

1) There exist distinct finite subsets F and G of S such that $\sum_{x \in F} \frac{1}{x}=\sum_{x \in G} \frac{1}{x}$.
2) There exists a positive rational number $r<1$ such that $\sum_{x \in F} \frac{1}{x} \neq r$ for every finite subset F of S.
