
The Viking Battle - Part 1 2019

Problem 1 Let n ≥ 3 be an integer. Prove that there exists a set S of 2n positive
integers satisfying the following property: For every m = 2, 3, . . . , n the set S can
be partitioned into two subsets such that one of these subsets has cardinality m and
the sums of the elements in each subset are the same.

Problem 2 Let ABC be a triangle with AB = AC, and let M be the midpoint
of BC. Let P be a point such that PB < PC and PA parallel to BC. Let X and Y
be points on the lines PB and PC, respectively, so that B lies on the segment PX,
C lies on the segment PY , and ∠PXM = ∠PYM . Prove that the quadrilateral
APXY is cyclic.

Problem 3 Given any set S of positive integers, show that at least one of the
following two assertions holds

1) There exist distinct finite subsets F and G of S such that
∑

x∈F
1
x

=
∑

x∈G
1
x
.

2) There exists a positive rational number r < 1 such that
∑

x∈F
1
x
6= r for every

finite subset F of S.
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Problem 1 Let n ≥ 3 be an integer. Prove that there exists a set S of 2n positive
integers satisfying the following property: For every m = 2, 3, . . . , n the set S can
be partitioned into two subsets such that one of these subsets has cardinality m and
the sums of the elements in each subset are the same.

Solution to problem 1 We prove that the following set fulfils the conditions:

S = {3k | k = 1, 2, . . . , n− 1} ∪ {2 · 3k | k = 1, 2, . . . , n− 1} ∪ {1, 3n + 9

2
− 1}.

It is easy to see that all these 2n numbers are different. The sum of the elements of
S is

1 +
(3n + 9

2
−1
)

+
n−1∑
k=1

(3k + 2 ·3k) =
3n + 9

2
+

n−1∑
k=1

3k+1 =
3n + 9

2
+

3n+1 − 9

2
= 2 ·3n.

Hence we just have to show that for each m = 2, 3, . . . , n there exists an m-element
subset Am of S such that the sum of the elements of Am is 3n. Let

Am = {2 · 3k | k = n− (m− 1), n− (m− 2), . . . , n− 1} ∪ {3n−m+1}.

Clearly Am has m elements. The sum of the elements of Am is

3n−m+1 +
m−1∑
k=1

2 · 3n−k = 3n−m+1 + 2 · 3n − 3n−m+1

2
= 3n

as required.
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Problem 2 Let ABC be a triangle with AB = AC, and let M be the midpoint
of BC. Let P be a point such that PB < PC and PA parallel to BC. Let X and Y
be points on the lines PB and PC, respectively, so that B lies on the segment PX,
C lies on the segment PY , and ∠PXM = ∠PYM . Prove that the quadrilateral
APXY is cyclic.

Solution to problem 2 Since AB = AC, we know that AM is perpendicular to
BC, and hence PA is perpendicular to AM since it is parallel to BC. Let Z be the
intersection of the line AM , and the line through Y perpendicular to PY . The circle
with diameter PZ now goes through A and Y because ∠PAZ = ∠PY Z = 90◦ by
construction. To prove that APXY is cyclic we just need to prove that X is on the
circle with diameter PZ and hence that ∠PXZ = 90◦.

A

B C

P

M

Z

Y

X

By construction Z lies on the perpendicular bisector of BC. Hence the two circles
with diametres BZ and CZ intersect at M . Since ∠ZY C = 90◦, Y lies on the circle
with diameter CZ. Hence

∠BZM = ∠CZM = ∠CYM = ∠BXM

and thus X is on the circle BMZ. This proves that

∠PXZ = ∠BXZ = 180◦ − ∠ZMB = 90◦

as required.
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Solution by inversion: Denoting by D and E the projections of M on the lines PB
and PC, we have

DX

DM
=
EY

EM
.

We invert in P and denote images by a prime. The previous relation then becomes

D′X ′/(PD′ · PX ′)
D′M ′/(PD′ · PM ′)

=
E ′Y ′/(PE ′ · PY ′)
E ′M ′/(PE ′ · PM ′)

,

or
D′X ′

PX ′ ·D′M ′ =
E ′Y ′

PY ′ · E ′M ′ .

Now notice that D, M , E, A and P are concyclic, so D′, M ′, E ′ and A′ are
collinear. Further, because M and the point at infinity on the line BC divide segment
BC harmonically, it follows by projection in P that M ′ and A′ divide segment D′E ′

harmonically. That is,
D′M ′

E ′M ′ =
D′A′

E ′A′
,

so the preceding equation becomes

D′X ′

PX ′ ·D′A′
=

E ′Y ′

PY ′ · E ′A′
,

which, by the converse of Menelaos’ theorem applied to 4PD′E ′, implies (since X ′

and Y ′ are interior to the sides PD′ and PE ′ while A′ is exterior to the side D′E ′)
that X ′, Y ′ and A′ are collinear. Then X, Y , A and P are concyclic.
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Problem 3 Given any set S of positive integers, show that at least one of the
following two assertions holds

1) There exist distinct finite subsets F and G of S such that
∑

x∈F
1
x

=
∑

x∈G
1
x
.

2) There exists a positive rational number r < 1 such that
∑

x∈F
1
x
6= r for every

finite subset F of S.

Solution to problem 3 Assume by contradiction that neither of 1) and 2) holds.
For every rational number 0 ≤ r < 1 there exists a finite subset Fr of S such that∑

x∈Fr

1
x

= r, and when r = 0 let F0 = ∅.

We now prove that if x ∈ S and q, r are two rational numbers 0 < r < q < 1 such
that q − r = 1

x
, then x is a member of Fq if and only if x is not a member of Fr.

Assume that x ∈ Fq. Then ∑
y∈Fq\{x}

1

y
= q − 1

x
= r,

and hence Fr = Fq\{x}. Conversely if x is not in Fr, then∑
y∈Fr∪{x}

1

y
= r +

1

x
= q,

and hence Fq = Fr ∪ {x}, and x is a member of Fq.

Consider now an element x of S and a positive rational number r < 1. Let n = brxc,
and consider the sets Fr−n−k

x
for k = 0, . . . , n. Notice first that x is not a member

of Fr−n
x

since r − n
x
< 1

x
. On the other hand (r − n−1

x
) − (r − n

x
) = 1

x
, so x must

be a member of Fr−n−1
x

. Since (r − n−2
x

)− (r − n−1
x

) = 1
x

we deduce that x is not a

member of Fr−n−2
x

. By repeeding this argument we see that x is a member of Fr−n−k
x

when k is odd. Hence x is a memeber of Fr if n is odd.

Finally consider F 2
3
. By the preceding b2x

3
c is odd for each x in F 2

3
so 2x

3
is not an

integer for any x in F 2
3
. Since F 2

3
is finite, there exists a positive rational number ε

such that b2x−ε
3
c = b2x

3
c for every x ∈ F 2

3
, but this implies that x ∈ F 2

3
−ε for every

x ∈ F 2
3

and hence that F 2
3
⊆ F 2

3
−ε which is imposible. Hence at least one of the two

assertions holds.
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