The Viking Battle - Part 1 2019

Problem 1 Let n > 3 be an integer. Prove that there exists a set S of 2n positive
integers satisfying the following property: For every m = 2,3,... n the set S can
be partitioned into two subsets such that one of these subsets has cardinality m and
the sums of the elements in each subset are the same.

Problem 2 Let ABC be a triangle with AB = AC, and let M be the midpoint
of BC'. Let P be a point such that PB < PC and PA parallel to BC'. Let X and Y
be points on the lines PB and PC| respectively, so that B lies on the segment PX,
C lies on the segment PY, and ZPXM = ZPY M. Prove that the quadrilateral
APXY is cyclic.

Problem 3 Given any set S of positive integers, show that at least one of the
following two assertions holds

1) There exist distinct finite subsets F and G of S such that > .2 =3 1.
1

2) There exists a positive rational number 7 < 1 such that ) _, - # r for every

finite subset F of S.



Problem 1 Let n > 3 be an integer. Prove that there exists a set S of 2n positive
integers satisfying the following property: For every m = 2,3,...,n the set S can
be partitioned into two subsets such that one of these subsets has cardinality m and
the sums of the elements in each subset are the same.

Solution to problem 1 We prove that the following set fulfils the conditions:

3" +9

S={3"|k=1,2,....n—1}yu{2-3"|k=1,2,...,n—1}U{1, 5
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It is easy to see that all these 2n numbers are different. The sum of the elements of
S is
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Hence we just have to show that for each m = 2,3, ... n there exists an m-element

subset A,, of S such that the sum of the elements of A,, is 3". Let
Apn=1{2-3"k=n—(m—-1),n—(m—-2),...,n—1}U {3}
Clearly A,, has m elements. The sum of the elements of A,, is

m—1 3 _ 3n—m+1

3n—m+1 + Z 9. 3n—k‘ — 3n—m+1 +92. # = 3n
k=1

as required.



Problem 2 Let ABC be a triangle with AB = AC, and let M be the midpoint
of BC. Let P be a point such that PB < PC and PA parallel to BC'. Let X and Y
be points on the lines PB and PC|, respectively, so that B lies on the segment PX,
C lies on the segment PY, and /ZPXM = ZPY M. Prove that the quadrilateral
APXY is cyclic.

Solution to problem 2 Since AB = AC, we know that AM is perpendicular to
BC', and hence PA is perpendicular to AM since it is parallel to BC. Let Z be the
intersection of the line AM, and the line through Y perpendicular to PY. The circle
with diameter PZ now goes through A and Y because L/PAZ = ZPY Z = 90° by
construction. To prove that APXY is cyclic we just need to prove that X is on the
circle with diameter PZ and hence that Z/PXZ = 90°.
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By construction Z lies on the perpendicular bisector of BC. Hence the two circles
with diametres BZ and C'Z intersect at M. Since ZZY C' = 90°, Y lies on the circle
with diameter C'Z. Hence

/BZM =/CZM = /CYM = /ZBXM
and thus X is on the circle BM Z. This proves that
/PX7Z =/BXZ =180° - ZZMB = 90°

as required.



Solution by inversion: Denoting by D and F the projections of M on the lines PB

and PC', we have
DX EY

DM  EM’
We invert in P and denote images by a prime. The previous relation then becomes
D'X'/(PD' - PX') B EY'/(PE'- PY")
D'M'/(PD'-PM')  E'M'/(PE'-PM’)’

o DX’ %%
PX'-D'M'  PY'-E'M'"

Now notice that D, M, E, A and P are concyclic, so D', M’', E' and A’ are
collinear. Further, because M and the point at infinity on the line BC' divide segment
BC harmonically, it follows by projection in P that M’ and A’ divide segment D’FE’
harmonically. That is,

D'M DA
E'M'~ E'A’
so the preceding equation becomes

DX’ EY’

PX'-D'A" PY'- E'A”
which, by the converse of Menelaos’ theorem applied to APD'E’, implies (since X’
and Y’ are interior to the sides PD’ and PE’ while A’ is exterior to the side D'E’)
that X', Y" and A’ are collinear. Then X, Y, A and P are concyclic.



Problem 3 Given any set S of positive integers, show that at least one of the
following two assertions holds

1) There exist distinct finite subsets F and G of S such that > .+ =3 ..

2) There exists a positive rational number r < 1 such that Y- . < # r for every
finite subset F' of S.

Solution to problem 3 Assume by contradiction that neither of 1) and 2) holds.
For every rational number 0 < r < 1 there exists a finite subset F,. of S such that
> wer, = =1, and when r = 0 let Fy = 0.

We now prove that if x € S and ¢,r are two rational numbers 0 < r < ¢ < 1 such
that ¢ — r = %, then x is a member of F| if and only if x is not a member of F,.
Assume that x € Fj,. Then

j{: 1 :ZQ‘_'i =T,

yerpfz} Y

and hence F, = F,\{z}. Conversely if = is not in F,, then

> ézr%:q,

yeF-U{z}

and hence F, = F, U {z}, and x is a member of Fj.

Consider now an element x of S and a positive rational number r < 1. Let n = |rz|,

and consider the sets Fr—ﬂ for K = 0,...,n. Notice first that = is not a member

of F_n since r — 2 < 1. On the other hand (r — ”;1) —(r—12) =1 soz must
be a member of F,_a-1. Since (r — 2=2) — (r — 2=1) = 1 we deduce that z is not a
member of F,_n—2. By repeeding this argument we see that x is a member of F_n—x
when & is odd. Hence  is a memeber of F, if n is odd. :

Finally consider F 2. By the preceding [sz is odd for each x in F2 SO ?f: is not an

integer for any x in F 2. Since F > is finite, there exists a positive rational number ¢
such that [22=¢] = |2 J for every x € F, but this implies that z € F2_ for every
x € F > and hence that F y C Fz . which is imposible. Hence at least one of the two
assertions holds.



