## The Viking Battle - Part 12019

Problem 1 Let $n \geq 3$ be an integer. Prove that there exists a set $S$ of $2 n$ positive integers satisfying the following property: For every $m=2,3, \ldots, n$ the set $S$ can be partitioned into two subsets such that one of these subsets has cardinality $m$ and the sums of the elements in each subset are the same.

Problem 2 Let $A B C$ be a triangle with $A B=A C$, and let $M$ be the midpoint of $B C$. Let $P$ be a point such that $P B<P C$ and $P A$ parallel to $B C$. Let $X$ and $Y$ be points on the lines $P B$ and $P C$, respectively, so that $B$ lies on the segment $P X$, $C$ lies on the segment $P Y$, and $\angle P X M=\angle P Y M$. Prove that the quadrilateral $A P X Y$ is cyclic.

Problem 3 Given any set $S$ of positive integers, show that at least one of the following two assertions holds

1) There exist distinct finite subsets $F$ and $G$ of $S$ such that $\sum_{x \in F} \frac{1}{x}=\sum_{x \in G} \frac{1}{x}$.
2) There exists a positive rational number $r<1$ such that $\sum_{x \in F} \frac{1}{x} \neq r$ for every finite subset $F$ of $S$.

Problem 1 Let $n \geq 3$ be an integer. Prove that there exists a set $S$ of $2 n$ positive integers satisfying the following property: For every $m=2,3, \ldots, n$ the set $S$ can be partitioned into two subsets such that one of these subsets has cardinality $m$ and the sums of the elements in each subset are the same.

Solution to problem 1 We prove that the following set fulfils the conditions:

$$
S=\left\{3^{k} \mid k=1,2, \ldots, n-1\right\} \cup\left\{2 \cdot 3^{k} \mid k=1,2, \ldots, n-1\right\} \cup\left\{1, \frac{3^{n}+9}{2}-1\right\}
$$

It is easy to see that all these $2 n$ numbers are different. The sum of the elements of $S$ is
$1+\left(\frac{3^{n}+9}{2}-1\right)+\sum_{k=1}^{n-1}\left(3^{k}+2 \cdot 3^{k}\right)=\frac{3^{n}+9}{2}+\sum_{k=1}^{n-1} 3^{k+1}=\frac{3^{n}+9}{2}+\frac{3^{n+1}-9}{2}=2 \cdot 3^{n}$.
Hence we just have to show that for each $m=2,3, \ldots, n$ there exists an $m$-element subset $A_{m}$ of $S$ such that the sum of the elements of $A_{m}$ is $3^{n}$. Let

$$
A_{m}=\left\{2 \cdot 3^{k} \mid k=n-(m-1), n-(m-2), \ldots, n-1\right\} \cup\left\{3^{n-m+1}\right\} .
$$

Clearly $A_{m}$ has $m$ elements. The sum of the elements of $A_{m}$ is

$$
3^{n-m+1}+\sum_{k=1}^{m-1} 2 \cdot 3^{n-k}=3^{n-m+1}+2 \cdot \frac{3^{n}-3^{n-m+1}}{2}=3^{n}
$$

as required.

Problem 2 Let $A B C$ be a triangle with $A B=A C$, and let $M$ be the midpoint of $B C$. Let $P$ be a point such that $P B<P C$ and $P A$ parallel to $B C$. Let $X$ and $Y$ be points on the lines $P B$ and $P C$, respectively, so that $B$ lies on the segment $P X$, $C$ lies on the segment $P Y$, and $\angle P X M=\angle P Y M$. Prove that the quadrilateral $A P X Y$ is cyclic.

Solution to problem 2 Since $A B=A C$, we know that $A M$ is perpendicular to $B C$, and hence $P A$ is perpendicular to $A M$ since it is parallel to $B C$. Let $Z$ be the intersection of the line $A M$, and the line through $Y$ perpendicular to $P Y$. The circle with diameter $P Z$ now goes through $A$ and $Y$ because $\angle P A Z=\angle P Y Z=90^{\circ}$ by construction. To prove that $A P X Y$ is cyclic we just need to prove that $X$ is on the circle with diameter $P Z$ and hence that $\angle P X Z=90^{\circ}$.


By construction $Z$ lies on the perpendicular bisector of $B C$. Hence the two circles with diametres $B Z$ and $C Z$ intersect at $M$. Since $\angle Z Y C=90^{\circ}, Y$ lies on the circle with diameter $C Z$. Hence

$$
\angle B Z M=\angle C Z M=\angle C Y M=\angle B X M
$$

and thus $X$ is on the circle $B M Z$. This proves that

$$
\angle P X Z=\angle B X Z=180^{\circ}-\angle Z M B=90^{\circ}
$$

as required.

Solution by inversion: Denoting by $D$ and $E$ the projections of $M$ on the lines $P B$ and $P C$, we have

$$
\frac{D X}{D M}=\frac{E Y}{E M}
$$

We invert in $P$ and denote images by a prime. The previous relation then becomes

$$
\frac{D^{\prime} X^{\prime} /\left(P D^{\prime} \cdot P X^{\prime}\right)}{D^{\prime} M^{\prime} /\left(P D^{\prime} \cdot P M^{\prime}\right)}=\frac{E^{\prime} Y^{\prime} /\left(P E^{\prime} \cdot P Y^{\prime}\right)}{E^{\prime} M^{\prime} /\left(P E^{\prime} \cdot P M^{\prime}\right)}
$$

or

$$
\frac{D^{\prime} X^{\prime}}{P X^{\prime} \cdot D^{\prime} M^{\prime}}=\frac{E^{\prime} Y^{\prime}}{P Y^{\prime} \cdot E^{\prime} M^{\prime}}
$$

Now notice that $D, M, E, A$ and $P$ are concyclic, so $D^{\prime}, M^{\prime}, E^{\prime}$ and $A^{\prime}$ are collinear. Further, because $M$ and the point at infinity on the line $B C$ divide segment $B C$ harmonically, it follows by projection in $P$ that $M^{\prime}$ and $A^{\prime}$ divide segment $D^{\prime} E^{\prime}$ harmonically. That is,

$$
\frac{D^{\prime} M^{\prime}}{E^{\prime} M^{\prime}}=\frac{D^{\prime} A^{\prime}}{E^{\prime} A^{\prime}}
$$

so the preceding equation becomes

$$
\frac{D^{\prime} X^{\prime}}{P X^{\prime} \cdot D^{\prime} A^{\prime}}=\frac{E^{\prime} Y^{\prime}}{P Y^{\prime} \cdot E^{\prime} A^{\prime}}
$$

which, by the converse of Menelaos' theorem applied to $\triangle P D^{\prime} E^{\prime}$, implies (since $X^{\prime}$ and $Y^{\prime}$ are interior to the sides $P D^{\prime}$ and $P E^{\prime}$ while $A^{\prime}$ is exterior to the side $D^{\prime} E^{\prime}$ ) that $X^{\prime}, Y^{\prime}$ and $A^{\prime}$ are collinear. Then $X, Y, A$ and $P$ are concyclic.

Problem 3 Given any set $S$ of positive integers, show that at least one of the following two assertions holds

1) There exist distinct finite subsets $F$ and $G$ of $S$ such that $\sum_{x \in F} \frac{1}{x}=\sum_{x \in G} \frac{1}{x}$.
2) There exists a positive rational number $r<1$ such that $\sum_{x \in F} \frac{1}{x} \neq r$ for every finite subset $F$ of $S$.

Solution to problem 3 Assume by contradiction that neither of 1) and 2) holds. For every rational number $0 \leq r<1$ there exists a finite subset $F_{r}$ of $S$ such that $\sum_{x \in F_{r}} \frac{1}{x}=r$, and when $r=0$ let $F_{0}=\emptyset$.
We now prove that if $x \in S$ and $q, r$ are two rational numbers $0<r<q<1$ such that $q-r=\frac{1}{x}$, then $x$ is a member of $F_{q}$ if and only if $x$ is not a member of $F_{r}$. Assume that $x \in F_{q}$. Then

$$
\sum_{y \in F_{q} \backslash\{x\}} \frac{1}{y}=q-\frac{1}{x}=r
$$

and hence $F_{r}=F_{q} \backslash\{x\}$. Conversely if $x$ is not in $F_{r}$, then

$$
\sum_{y \in F_{r} \cup\{x\}} \frac{1}{y}=r+\frac{1}{x}=q
$$

and hence $F_{q}=F_{r} \cup\{x\}$, and $x$ is a member of $F_{q}$.
Consider now an element $x$ of $S$ and a positive rational number $r<1$. Let $n=\lfloor r x\rfloor$, and consider the sets $F_{r-\frac{n-k}{x}}$ for $k=0, \ldots, n$. Notice first that $x$ is not a member of $F_{r-\frac{n}{x}}$ since $r-\frac{n}{x}<\frac{1}{x}$. On the other hand $\left(r-\frac{n-1}{x}\right)-\left(r-\frac{n}{x}\right)=\frac{1}{x}$, so $x$ must be a member of $F_{r-\frac{n-1}{x}}$. Since $\left(r-\frac{n-2}{x}\right)-\left(r-\frac{n-1}{x}\right)=\frac{1}{x}$ we deduce that $x$ is not a member of $F_{r-\frac{n-2}{x}}$. By repeeding this argument we see that $x$ is a member of $F_{r-\frac{n-k}{x}}$ when $k$ is odd. Hence $x$ is a memeber of $F_{r}$ if $n$ is odd.
Finally consider $F_{\frac{2}{3}}$. By the preceding $\left\lfloor\frac{2 x}{3}\right\rfloor$ is odd for each $x$ in $F_{\frac{2}{3}}$ so $\frac{2 x}{3}$ is not an integer for any $x$ in $F_{\frac{2}{3}}$. Since $F_{\frac{2}{3}}$ is finite, there exists a positive rational number $\epsilon$ such that $\left\lfloor\frac{2 x-\epsilon}{3}\right\rfloor=\left\lfloor\frac{2 x}{3}\right\rfloor$ for every $x \in F_{\frac{2}{3}}$, but this implies that $x \in F_{\frac{2}{3}-\epsilon}$ for every $x \in F_{\frac{2}{3}}$ and hence that $F_{\frac{2}{3}} \subseteq F_{\frac{2}{3}-\epsilon}$ which is imposible. Hence at least one of the two assertions holds.

