The Viking Battle - Part 12018

Problem 1 Let q be a real number. A Viking has ten distinct real numbers written in his helmet, and he writes the following three lines of numbers in the sand.

- In the first line, the Viking writes down every number of the form $a-b$ where a and b are two (not necessarily distinct) numbers written in his helmet.
- In the second line, the Viking writes every number of the form qab where a and b are (not necessarily distinct) numbers written in the first line.
- In the third line, the Viking writes every number of the form $a^{2}+b^{2}-c^{2}-d^{2}$ where a, b, c and d are (not necessarily distinct) numbers written in the first line.

Determine all values of q such that regardless of the numbers in the Viking's helmet, every number in the second line is also a number in the third line.

Problem 2 Let $A B C D E$ be a convex pentagon such that $A B=B C=C D$, $\angle E A B=\angle B C D$ and $\angle C D E=\angle A B C$. Prove that the line from E perpendicular to $B C$, the line $A C$ and the line $B D$ are concurrent.

Problem 3 Let p be a prime number. Alice and Bob play the following game making moves alternately, and Alice has the first move. In each move, the player chooses an index i in the set $\{0,1,2, \ldots, p-1\}$ that was not chosen before by either of the two players and then choose an element a_{i} of the set $\{0,1,2,3,4,5,6,7,8,9\}$. The game ends after all the indices in the set $\{0,1,2, \ldots, p-1\}$ have been chosen. Then the following number is computed:

$$
M=a_{0}+10 \cdot a_{1}+\cdots+10^{p-1} a_{p-1}
$$

Alice wins if M is divisible by p, and Bob wins if it is not. Determine for each p which of the players has a winning strategy.

