## Solution to problem 1

Answer: $q=-2,0,2$.
First we show that the numbers $q=-2,0,2$ fulfil the conditions. The third line necessarily contains 0 , so $q=0$ works. For any two numbers $a$ and $b$ from the first line, write $a=x-y$ and $b=u-v$, where $x, y, u$ and $v$ are four (not necessarily distinct) numbers written in the Viking's helmet. Now

$$
2 a b=2(x-y)(u-v)=(x-v)^{2}+(y-u)^{2}-(x-u)^{2}-(y-v)^{2}
$$

and hence $q=2$ works. By changing the sign of each side, we see that $q=-2$ also works.

Now we prove that no other $q$ works by looking at examples of ten numbers. Assume that $q \neq-2,0,2$. If the ten numbers in the helmet are $1,2,3,4,5,6,7,8,9,10$, then the numbers in the first line are $-9,-8, \ldots, 8,9$. The second line then contains both $q$ and $81 q$, so the third line must contain both of them, and hence $q$ is an integer since all numbers in the third line are integers. The largest number in the third line is $9^{2}+9^{2}-0^{2}-0^{2}=162$, and the smallest is $0^{2}+0^{2}-9^{2}-9^{2}=-162$. Now $-162 \leq 81 q \leq 162$, and hence $q= \pm 1$ since $q$ is an integer and $q \neq-2,0,2$.

Now assume that $q=1$ or $q=-1$. If the ten numbers in the helmet are $0,1,4,8,16,20,24,28,32$, then the first line contains the numbers $\pm 1$ and $\pm 4$, and so does the second line. If $a$ is in the first line, then $a \not \equiv 2(\bmod 4)$, and hence $a^{2} \equiv 0$ or $a^{2} \equiv 1(\bmod 8)$. Consequently no number in the third line has residue 4 modulo 8 , which is a contradiction since $\pm 4$ are in line 2 .

This shows that $q=-2,0,2$ are the only numbers that fulfil the conditions.

Solution to problem 2 The perpendicular bisector of $A C$ passes trough $B$ since triangle $A B C$ is an isosceles triangle, and the perpendicular bisector of $B D$ passes trough $C$ since triangle $B C D$ is an isosceles triangle. Let $I$ be the intersection of these two perpendicular bisectors. Let $H$ be the intersection of $A C$ and $B D$. Now by construction $H$ is the orthocenter of triangle $B C I$. It remains to prove that $E I$ is perpendicular to $B C$. Lat $F$ be the intersection of $E I$ and $B C$ and look at the two quadrilaterals $E A B F$ and $E D C F$.

Since $\angle E A B=\angle F C D$ and $\angle A B F=\angle C D E$, if we prove that $E I$ is the angle bisector of $\angle A E D$, it will follow that $\angle B F E=\angle E F C$ and hence that $E I$ i perpendicular to $B C$.


The lines $B I$ and $C I$ bisects $\angle A B C$ and $\angle B C D$, respectively. Since $I A=I C$, $I B=I D$ and $A B=B C=C D$, the triangles $I A B, I C B$ and $I C D$ are congruent. Hence $\angle I A B=\angle I C B=\frac{1}{2} \angle B C D=\frac{1}{2} \angle E A B$, so the line $I A$ bisects $\angle E A B$. Similarly the line $I D$ bisects $\angle C D E$. Finally $I E$ bisects $\angle D E A$ since $I$ lies on all the other four internal bisectors of the angles of the pentagon, and we are done.

## Solution to problem 3

Answer: Alice has a winning strategy for every prime $p$.
If $p=2$ or $p=5$, then Alice chooses $a_{0}=0$ in the first move, and $M$ becomes a multiple of 10 no matter what, and hence Alice wins.

Now assume that $p$ is a prime and $p \neq 2,5$. We say that a player makes the move $\left(i, a_{i}\right)$ if she chooses the index $i$ and the digit $a_{i}$. In the first move Alice makes the move $(p-1,0)$, and then she pairs the indexes $0,1, \ldots, p-2$ left after her first move in pairs $\left(k, k+\frac{p-1}{2}\right), k=0,1, \ldots, \frac{p-3}{2}$.

By Fermat's Little Theorem

$$
\left(10^{\frac{p-1}{2}}-1\right)\left(10^{\frac{p-1}{2}}+1\right)=10^{p-1}-1 \equiv 1-1=0 \quad(\bmod p)
$$

and hence $p$ divides either $10^{\frac{p-1}{2}}-1$ or $10^{\frac{p-1}{2}}+1$.
Case $a: 10^{\frac{p-1}{2}} \equiv-1(\bmod p)$. For each move $\left(i, a_{i}\right)$ of Bob, Alice chooses $\left(j, a_{i}\right)$ such that $i$ and $j$ are one of the pairs. Note that this is always possible. By following this strategy, in the end

$$
\begin{aligned}
M & =a_{0}+10 \cdot a_{1}+\cdots+10^{p-1} a_{p-1} \\
& =\sum_{i=0}^{\frac{p-3}{2}} a_{i}\left(10^{i}+10^{i+\frac{p-1}{2}}\right)=\left(1+10^{\frac{p-1}{2}}\right) \sum_{i=0}^{\frac{p-3}{2}} a_{i} \cdot 10^{i} \equiv 0 \quad(\bmod p)
\end{aligned}
$$

and hence Alice wins.
Case $b: 10^{\frac{p-1}{2}} \equiv 1(\bmod p)$. For each move $\left(i, a_{i}\right)$ of Bob, Alice chooses $\left(j, 9-a_{i}\right)$ such that $i$ and $j$ are one of the pairs. By following this strategy, in the end

$$
\begin{aligned}
M & =a_{0}+10 \cdot a_{1}+\cdots+10^{p-1} a_{p-1} \\
& =\sum_{i=0}^{\frac{p-3}{2}}\left(a_{i} \cdot 10^{i}+\left(9-a_{i}\right) 10^{i+\frac{p-1}{2}}\right) \equiv \sum_{i=0}^{\frac{p-3}{2}}\left(a_{i} \cdot 10^{i}+\left(9-a_{i}\right) 10^{i}\right) \\
& =\sum_{i=0}^{\frac{p-3}{2}} 9 \cdot 10^{i}=10^{\frac{p-1}{2}}-1 \equiv 0 \quad(\bmod p)
\end{aligned}
$$

and hence Alice wins.

