
The Viking Battle - Part 1 2017
Version: English

Problem 1 Let n and k be positive integers where k < n. Peter and John play a
game where they both know the rules. Peter chooses a secret n-digit binary string.
Then he gives John a list of all n-digit binary strings that differ from his secret
string in exactly k positions. (For example if n = 3, k = 1, and the secret string is
101, the list is 001, 111, 100). Now John has to guess the secret string.

What is the minimum number of guesses (in terms of n and k) needed to guarantee
the correct answer?

Problem 2 For any positive integer k denote the sum of digits of k in its decimal
representation by S(k).

Find all polynomials P (x) with integer coefficients such that for any positive integer
n ≥ 2017 the integer P (n) is positive and

S(P (n)) = P (S(n)).

Problem 3 Let B = (−1, 0) and C(1, 0) be fixed points in the coordinate plane.
A nonempty, bounded subset S of the plan is said to be a viking set if

(i) for any triangle P1P2P3 there exists a unique point A in S and a permutation
σ of the indices {1, 2, 3} for which the triangles ABC and Pσ(1)Pσ(2)Pσ(3) are
similar; and

(ii) there is a point T in S such that for every Q in S the segment TQ lies entirely
in S.

Prove that there exist two distinct viking subsets S and S ′ of the set

{(x, y) | x ≥ 0, y ≥ 0}

such that if A ∈ S and A′ ∈ S ′ are the unique choices of points in (i) then the
product BA ·BA′ is a constant independent of the triangle P1P2P3.
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Solution to problem 1

Answer: If k 6= n
2
, then the minimum number of guesses needed to guarantee the

correct answer is 1, and if k = n
2
, then the minimum number of guesses needed to

guarantee the correct answer is 2.
If k < n

2
, then instead we look at the string X ′ that is different from the secret

string X at every position, and then the strings written to John differs from X ′

in exactly n − k positions, and the task of guessing X is equivalent to the task of
guessing X ′. Hence wlog we can assume that k ≥ n

2
.

Let T be the set of all n-digit binary strings, and let S be the set of strings
written on the list. Now let

Y ∈ T\(S ∪X).

Then Y differs from X in exactly m positions, where m is a positive integer different
from k. Assume wlog that Y differs from X at the first m positions, and look at
Z ∈ S that differs from X at the first k positions. Now Y and Z differ at |k −m|
positions. If k 6= n

2
or if m 6= n, then |k −m| < k and hence John can rule out Y as

the secret string. In the same way he can rule out every string in

T\(S ∪X)

with one exception; he cannot rule out the string where m = n in the case k = n
2
.

Thus if k 6= n
2

he can find X in one guess.
If k = n

2
and m = n we have |k−m| = k. Hence Y is the string that differs from

X at every position. This string is unique and it leads to the same list. Hence John
is not able to deduce which of these strings is the secret one. In this case he can
rule out all other strings but these two, and thus the minimum number of guesses
needed to guarantee the correct answer is 2.
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Solution to problem 2

Answer: P (x) = c, where c ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, or P (x) = x.

Case 1. P is constant.
Let P (x) = c where c is an integer. Then the condition becomes S(c) = c. This

is true iff c ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}.
Case 2. degP = 1.

We have the following observation. For any positive integers m and n, we have

S(m+ n) ≤ S(m) + S(n), †

with equality if and only if there is no carry in the addition m+ n.
Let P (x) = ax+ b for some integers a and b, a 6= 0. As P (n) is positive for large

n, we must have a > 0. The condition of the problem becomes S(an+b) = aS(n)+b
for all n ≥ 2017. Setting n = 2025 and n = 2020 respectively, we get

S(2025a+ b)− S(2020a+ b) = (aS(2025) + b)− (aS(2020) + b) = 5a.

On the other hand, † implies

S(2025a+ b) = S((2020a+ b) + 5a)) ≤ S(2020a+ b) + S(5a).

This gives 5a ≤ S(5a). As a ≥ 1, this holds only when a = 1, since S(n) < n for all
n > 9. Hence P (x) = x+ b and S(n+ b) = S(n) + b for all n ≥ 2017.

If b > 0, let k be a positive integer such that 10k > b+ 2017, and let n = 10k− b.
Notice that n ≥ 2017. Now

S(n+ b) = S(10k) = 1 and S(n) + b ≥ 1 + 1 = 2,

a contradiction.
If b < 0, let k be a positive integer such that 10k > −b+ 2017, and let n = 10k.

Now
S(n+ b) > 0 and S(n) + b = 1 + b ≤ 0,

a contradiction. Therefore, we conclude that P (x) = x, for which the condition is
trivially satisfied.

Case 3. degP > 1.
Suppose P (x) = adx

d + · · · + a1x + a0, where ad 6= 0 and d > 1. Since P (x) is
positive for large x, we know that ad > 0. Consider n = 10k − 1 , k ≥ 4. In this case
the condition is

S(P (10k − 1)) = P (9k)

for all k ≥ 4. Now

P (9k) ≥ 1

2
ad(9k)d
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for sufficiently large k. We also know that P (10k − 1) ≤ (10k)d · 10m = 10kd+m for
some konstant m and sufficiently large k, and hence

S(P (10k − 1)) ≤ 9(kd+m)

for sufficiently large k. This is a contradiction since 9(kd + m) < 1
2
ad(9k)d for

sufficiently large k. Hence there are no solutions in this case.
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Solution to problem 3

If in the similarity of 4ABC and 4Pσ(1)Pσ(2)Pσ(3), BC corresponds to the longest
side of 4Pσ(1)Pσ(2)Pσ(3), then we have BC ≥ AB ≥ AC. The condition BC ≥ AB
is equivalent to (x + 1)2 + y2 ≤ 4 where A = (x, y), while AB ≥ AC is trivially
satisfied for any point in the first quadrant. Then we first define

S = {(x, y) | (x+ 1)2 + y2 ≤ 4, x ≥ 0, y ≥ 0}.

Note that S is the intersection of a disk and the first quadrant, so it is bounded and
convex, and we can choose any T ∈ S to meet condition (ii). For any point A in S,
the relation BC ≥ AB ≥ AC always holds. Therefore, the point A in (i) is uniquely
determined, while its existence is guaranteed by the above construction.

B C

S S ′

x

y

Next, if in the similarity of 4A′BC and 4Pσ(1)Pσ(2)Pσ(3), BC corresponds to the
second longest side of 4Pσ(1)Pσ(2)Pσ(3), then we have A′B ≥ BC ≥ A′C. The two
inequalities are equivalent to (x + 1)2 + y2 ≥ 4 and (x − 1)2 + y2 ≤ 4 respectively,
where A′ = (x, y). Then we define

S ′ = {(x, y) | (x+ 1)2 + y2 ≥ 4, (x− 1)2 + y2 ≤ 4, x ≥ 0, y ≥ 0}.

The boundedness condition is satisfied while (i) can be argued as in the previous
case. For (ii) note that S ′ contains points inside the disk (x − 1)2 + y2 ≤ 4 and
outside the disk (x+ 1)2 + y2 ≤ 4. This shows we can take T ′ = (1, 2) in (ii), which
is the topmost point of the circle (x− 1)2 + y2 = 4.

It remains to check that the product BA · BA′ is a constant. Suppose we are
given a triangle P1P2P3 with P1P2 ≥ P2P3 ≥ P3P1. By the similarities, we have

BA = BC · P2P3

P1P2

and BA′ = BC · P1P2

P2P3

.

Thus BA ·BA′ = BC2 = 4, which is certainly independent of the triangle P1P2P3.
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