The Viking Battle - Part 12016 Version: English

Problem 1 Let $A B C$ be an acute triangle with orthocentre H. Let D be the point such that the quadrilateral $H A B D$ is a parallelogram (with $A B \| H D$ and $A H \| B D)$. Let E be the point on the line $D H$ such that the line $A C$ passes through the midpoint of the segment $H E$. Let F be the second point of intersection of the line $A C$ and the circumcircle of triangle $D C E$.

Prove that $E F=A H$.

Problem 2 The sequence a_{1}, a_{2}, \ldots of positive real numbers satisfies

$$
a_{k+1} \geqslant \frac{k a_{k}}{a_{k}^{2}+k-1}
$$

for every positive integer k. Prove that

$$
a_{1}+a_{2}+\cdots+a_{n} \geqslant n
$$

for every $n \geqslant 2$.

Problem 3 Let n be a positive integer. Two players A and B play a game in which they take turns choosing positive integers $k \leq n$. The rules of the game are:
(i) A player cannot choose a number that has been chosen by either player on any previous turn.
(ii) A player cannot choose a number adjacent to any of those the player has already chosen on any previous turn.
(iii) The game is a draw if all numbers have been chosen; otherwise the player who cannot choose a number anymore loses the game.

The player A takes the first turn. Determine the outcome of the game, assuming that both players use optimal strategies.

