Solution to problem 1 Since $H D \| A B$ and $B D \| A H$, we have $B D \perp B C$ and $C H \perp D H$. Hence the quadrilateral $B D C H$ is cyclic. Since H is the orthocenter of the triangle $A B C$, wa have $\angle H A C=90^{\circ}-\angle A C B=\angle C B H$. Using that $B D C H$ and $C D F E$ are cyclic quadrilaterals we get

$$
\angle C F E=\angle C D H=\angle C B H=\angle H A C .
$$

Let M be the intersection of $A C$ and $D H$ and hence the midpoint of $E H$ by construction. Let $P \neq A$ be the point on the line $A C$ such that $A H=H P$. Then $\angle M F E=\angle H A C=\angle M P H$. Since $M F E=\angle M P H, \angle F M E=\angle H M P$, and $E M=M H$, the triangles $E M F$ and $H M P$ are congruent, and thus $E F=H P=$ AH.

Comment Instead of introducing the point P, one can complete the solution by using the law of sines in the triangles $E F M$ and $A M H$, yielding:

$$
\frac{E F}{E M}=\frac{\sin \angle E M F}{\sin \angle M F E}=\frac{\sin \angle A M H}{\sin \angle H A M}=\frac{A H}{M H}=\frac{A H}{E M} .
$$

Solution to problem 2 From the constraint of the problem we see that

$$
\frac{k}{a_{k+1}} \leq \frac{a_{k}^{2}+k-1}{a_{k}}=a_{k}+\frac{k-1}{a_{k}}
$$

and so

$$
a_{k} \geq \frac{k}{a_{k+1}}-\frac{k-1}{a_{k}} .
$$

Summing up the above inequality for $k=1,2, \ldots, m$, we obtain

$$
a_{1}+a_{2}+\cdots+a_{m} \geq\left(\frac{1}{a_{2}}-\frac{0}{a_{1}}\right)+\left(\frac{2}{a_{3}}-\frac{1}{a_{2}}\right)+\cdots+\left(\frac{m}{a_{m+1}}-\frac{m-1}{a_{m}}\right)=\frac{m}{a_{m+1}}
$$

Now we prove the problem statement by induction on n. The case $n=2$ can be done applying the constraint for $k=1$:

$$
a_{1}+a_{2} \geq a_{1}+\frac{1}{a_{1}} \geq 2
$$

For the induction step, assume that the statement is true for some $n \geq 2$. If $a_{n+1} \geq 1$, then the induction hypothesis yields

$$
\left(a_{1}+\cdots+a_{n}\right)+a_{n+1} \geq n+1
$$

Otherwise, if $a_{n+1}<1$ then
$\left(a_{1}+\cdots+a_{n}\right)+a_{n+1} \geq \frac{n}{a_{n+1}}+a_{n+1}=\frac{n-1}{a_{n+1}}+\left(\frac{1}{a_{n+1}}+a_{n+1}\right)>(n-1)+2=n+1$.
That completes the solution.

Solution to problem 3

Answer: The game ends in a draw when $n=1,2,4,6$, otherwise B wins.
Firstly, we show that b wins whenever $n \neq 1,2,4,6$. For this purpose, we provide a strategy which guarantees that B can always make a move after A^{\prime} s move, and also guarantees that the game does not end in a draw.

We begin by proving that B can always move: By symmetry we can assume that A starts by choosing a number not exceeding $\frac{n+1}{2}$. Then B chooses n. After A has made the $k^{\text {th }}$ move where $k \geq 2$, we now prove that B can also make a move. Let S be the set of all the k numbers chosen by A so far. Then the set $\{1,2, \ldots, n\} \backslash S$ consists of k or $k+1$ "contiguous components". Since B has only chosen $k-1$ numbers, there is at least one component of $\{1,2, \ldots, n\} \backslash S$ consisting of numbers not yet picked by B. Hence B can choose a number from this component.

Case 1: Assume that $n \geq 3$ is odd. The only way the game can end in a draw, is if A picks all the odd numbers. But this situation cannot happen since B picks n as the first number.

Case 2: Assume that $n \geq 8$ is even: Since B picks n, the only way the game can end in a draw is if A picks all the odd numbers. After the second move of A, there is at least one odd number less than $n-1$ left, and hence B can prevent a draw by picking an odd number in the second move.

Case $n=1,2,4$. If $n=1,2$ the game obviously ends in a draw. If $n=4$, the only way A can prevent loosing, is by picking 1 or 4 . Assume wlog that A picks 1 . Then B has to pick 4 not to loose, and hence A can pick 3 and B is left with 2 .

Case $n=6$. The above shows that B gets at least a draw. On the other hand, A may also get at least a draw in the following way: First A picks 1 . After that B picks a number b. If $b=6$, then A reserves 5 for the last move, and picks 3 . If $b=4,5$, then A reserves $b+1$ for the last move, and picks 3 . If $b=2,3$, then A reserves $b+1$ for the last move, and picks 6 .

