The Viking Battle - Part 1 2015 Version: English

Problem 1 Let $n \ge 2$ be an integer, and let A_n be the set

$$A_n = \{2^n - 2^k | k \in \mathbb{Z}, 0 \le k < n\}.$$

Determine the largest integer M_n that cannot be written as the sum of one or more not necessarily distinct elements of A_n .

Problem 2 Define the function $f: (0,1) \rightarrow (0,1)$ by

$$f(x) = \begin{cases} x + \frac{1}{2} & , \ x < \frac{1}{2} \\ x^2 & , \ x \ge \frac{1}{2} \end{cases}$$

Let a_0 and b_0 be two reel numbers such that $0 < a_0 < b_0 < 1$. We define the sequences a_n and b_n by $a_n = f(a_{n-1})$ and $b_n = f(b_{n-1})$ for all $n = 1, 2, 3, \ldots$

Show that there exists a positive integer n such that

$$(a_n - a_{n-1}) \cdot (b_n - b_{n-1}) < 0.$$

Problem 3 Let Ω and O be the circumcircle and the circumcentre of an acute triangle ABC with AB > BC. The angle bisector of $\angle ABC$ intersects Ω at $M \neq B$. Let Γ be the circle with diameter BM. The angle bisectors of $\angle AOB$ and $\angle BOC$ intersect Γ at points P and Q respectively. The point R is chosen on the line PQ such that BR = MR. Prove that $BR \parallel AC$. (Here we always assume that an angle bisector is a ray.)