
Solution to problem 1

Answer: Mn = (n� 2)2n + 1.

Part 1. First we prove that every integer greater than (n�2)2n+1 can be represented
as such a sum. This is achieved by induction on n.

For n = 2, the set An = {2, 3}. Every positive integer m except 1 can be
represented as a sum of elements of An: as m = 2 + 2 + · · ·+ 2 if m is even, and as
m = 3 + 2 + 2 + · · ·+ 2 if m is odd.

Now consider some n > 2 and assume the induction hypothesis holds for n� 1.
Take an integer m > (n� 2)2n + 1. If m is even, then

m

2
> (n� 2)2n�1 > ((n� 1)� 2)2n�1 + 1.

Hence by the induction hypothesis

m

2
= (2n�1 � 2k1) + (2n�1 � 2k2) + · · ·+ (2n�1 � 2kr)

for some ki, with 0  ki < n� 1. It follows that

m = (2n � 2k1+1) + (2n � 2k2+1) + · · ·+ (2n � 2kr+1),

giving us the desired representation as a sum of elements of An. If m is odd, we
consider

m� (2n � 1)

2
>

(n� 2)2n + 1� (2n � 1)

2
= (n� 3)2n�1 + 1.

By the induction hypothesis there is a representation of the form

m� (2n � 1)

2
= (2n�1 � 2k1) + (2n�1 � 2k2) + · · ·+ (2n�1 � 2kr)

for some ki, with 0  ki < n� 1. It follows that

m = (2n � 2k1+1) + (2n � 2k2+1) + · · ·+ (2n � 2kr+1) + (2n � 1),

giving us the desired representation of m once again.

Part 2. It remains to prove that there is no representation of Mn = (n� 2)2n + 1.
Let N be the smallest positive integer that satisfies N ⌘ 1 (mod 2n), and which can
be represented as a sum of elements of An. Consider the representation of N , i.e.

N = (2n � 2k1) + (2n � 2k2) + · · ·+ (2n � 2kr),

where 0  k1, k2, . . . , kr < n. If ki = kj = n�1, then we can simply remove these two
terms from the sum to get a representation for N � 2(2n � 2n�1) = N � 2n as a sum
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of elements of An, which contradicts our choice of N . If ki = kj = k < n� 1, replace
the two terms by 2n � 2k+1, which is also an element of An, to get a representation
for N�2(2n�2k)+2n�2k+1 = N�2n. This is a contradiction once again. Therefor,
all ki have to be distinct, which means that

2k1 + 2k2 + · · ·+ 2kr  20 + 21 + · · ·+ 2n�1 = 2n � 1.

On the other hand

2k1+2k2+· · ·+2kr ⌘ �
⇣
(2n�2k1)+(2n�2k2)+· · ·+(2n�2kr)

⌘
= �N ⌘ �1 (mod 2n)

Thus we must have 2k1 + 2k2 + · · · + 2kr = 2n � 1, which is only possible if each
element of {0, 1, 2, . . . , n� 1} occurs as one of the ki. This gives us

N = n2n � (20 + 21 + · · ·+ 2n�1) = (n� 1)2n + 1.

In particular this means that (n�2)2n+1 cannot be represented as a sum of elements
of An.
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Solution to problem 2

Note that

f(x)� x =
1

2
> 0 if x <

1

2

f(x)� x = x2 � x < 0 if x � 1

2
.

We consider the interval (0, 1) divided into the two subintervals I1 = (0, 12) and
I2 = [12 , 1). The inequality

0 > (an � an�1) · (bn � bn�1) = (f(an�1)� an�1)(f(bn�1 � bn�1)

holds if and only if an�1 and bn�1 lie in distinct subintervals.
Let us now assume, to the contrary, that ak and bk always lie in the same subin-

terval. Consider the distance dk = |ak � bk|. If both ak and bk lie in I1, then

dk+1 = |ak+1 � bk+1| =
���ak +

1

2
�
⇣
bk +

1

2

⌘��� = dk.

If, on the other hand, ak and bk both lie in I2, then ak + bk � 1
2 +

1
2 + dk = 1 + dk,

which implies

dk+1 = |ak+1 � bk+1| = |a2k � b2k| = |(ak � bk)(ak + bk)| � dk(1 + dk).

This means that the di↵erence dk is non-decreasing, and particular dk � d0 > 0 for
all k.

If ak and bk lie in I2, then

dk+2 � dk+1 � dk(1 + dk) � dk(1 + d0).

If ak and bk lie in I1, then ak+1 and bk+1 both lie in I2, and so we have

dk+2 � dk+1(1 + dk+1) � dk+1(1 + d0) � dk(1 + d0).

In either case, dk+2 � dk(1 + d0), and inductively we get

d2m � d0(1 + d0)
m.

For su�ciently large m, the right-hand side is greater than 1, a contradiction. Thus
there must be a positive integer n such that an�1 and bn�1 do not lie in the same
subinterval, which proves the desired statement.

4



Solution to problem 3

Let K be the midpoint of BC, i.e. the centre of �. Notice that AB 6= BC implies
that K 6= O. Clearly the lines OM and OK are perpendicular bisectors of AC and
BM , respectively. Therefore, R is the intersection point of PQ and OK.

Let N be the second point of intersection of � with the line OM . Hence BN k
AC, and it su�ces to prove that BN passes trough R. Our plan for doing this is to
interpret the lines BN , OK and PQ as the radical axes of three appropriate circles.

Let ! be the circle with diameter BO. Since \BNO = \BKO = 90�, the points
N and K lie on !.

Next we show that the points O, K, P , and Q are concyclic. To this end, let
D and E be the midpoints of BC and AB, respectively. By our assumption of
triangle ABC, the points B, E, O, K, and D lie on ! is this order. It follows that
\EOR = \EBK = \KBD = \KOD, so the line KO externally bisects the angle
POQ. Since the point K is the centre of �, it also lies on the perpendicular bisector
of PQ. So K coincides with the midpoint of the arc POQ of the circumcircle � of
triangle POQ.

Thus the lines OK, BN , and PQ are pairwise radical axis of the circles !, � and
�. Hence they are concurrent at R, as required.
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