Solution to problem 1

Answer: $M_{n}=(n-2) 2^{n}+1$.
Part 1. First we prove that every integer greater than $(n-2) 2^{n}+1$ can be represented as such a sum. This is achieved by induction on n.

For $n=2$, the set $A_{n}=\{2,3\}$. Every positive integer m except 1 can be represented as a sum of elements of A_{n} : as $m=2+2+\cdots+2$ if m is even, and as $m=3+2+2+\cdots+2$ if m is odd.

Now consider some $n>2$ and assume the induction hypothesis holds for $n-1$. Take an integer $m>(n-2) 2^{n}+1$. If m is even, then

$$
\frac{m}{2}>(n-2) 2^{n-1}>((n-1)-2) 2^{n-1}+1
$$

Hence by the induction hypothesis

$$
\frac{m}{2}=\left(2^{n-1}-2^{k_{1}}\right)+\left(2^{n-1}-2^{k_{2}}\right)+\cdots+\left(2^{n-1}-2^{k_{r}}\right)
$$

for some k_{i}, with $0 \leq k_{i}<n-1$. It follows that

$$
m=\left(2^{n}-2^{k_{1}+1}\right)+\left(2^{n}-2^{k_{2}+1}\right)+\cdots+\left(2^{n}-2^{k_{r}+1}\right)
$$

giving us the desired representation as a sum of elements of A_{n}. If m is odd, we consider

$$
\frac{m-\left(2^{n}-1\right)}{2}>\frac{(n-2) 2^{n}+1-\left(2^{n}-1\right)}{2}=(n-3) 2^{n-1}+1
$$

By the induction hypothesis there is a representation of the form

$$
\frac{m-\left(2^{n}-1\right)}{2}=\left(2^{n-1}-2^{k_{1}}\right)+\left(2^{n-1}-2^{k_{2}}\right)+\cdots+\left(2^{n-1}-2^{k_{r}}\right)
$$

for some k_{i}, with $0 \leq k_{i}<n-1$. It follows that

$$
m=\left(2^{n}-2^{k_{1}+1}\right)+\left(2^{n}-2^{k_{2}+1}\right)+\cdots+\left(2^{n}-2^{k_{r}+1}\right)+\left(2^{n}-1\right)
$$

giving us the desired representation of m once again.
Part 2. It remains to prove that there is no representation of $M_{n}=(n-2) 2^{n}+1$. Let N be the smallest positive integer that satisfies $N \equiv 1\left(\bmod 2^{n}\right)$, and which can be represented as a sum of elements of A_{n}. Consider the representation of N, i.e.

$$
N=\left(2^{n}-2^{k_{1}}\right)+\left(2^{n}-2^{k_{2}}\right)+\cdots+\left(2^{n}-2^{k_{r}}\right)
$$

where $0 \leq k_{1}, k_{2}, \ldots, k_{r}<n$. If $k_{i}=k_{j}=n-1$, then we can simply remove these two terms from the sum to get a representation for $N-2\left(2^{n}-2^{n-1}\right)=N-2^{n}$ as a sum
of elements of A_{n}, which contradicts our choice of N. If $k_{i}=k_{j}=k<n-1$, replace the two terms by $2^{n}-2^{k+1}$, which is also an element of A_{n}, to get a representation for $N-2\left(2^{n}-2^{k}\right)+2^{n}-2^{k+1}=N-2^{n}$. This is a contradiction once again. Therefor, all k_{i} have to be distinct, which means that

$$
2^{k_{1}}+2^{k_{2}}+\cdots+2^{k_{r}} \leq 2^{0}+2^{1}+\cdots+2^{n-1}=2^{n}-1
$$

On the other hand
$2^{k_{1}}+2^{k_{2}}+\cdots+2^{k_{r}} \equiv-\left(\left(2^{n}-2^{k_{1}}\right)+\left(2^{n}-2^{k_{2}}\right)+\cdots+\left(2^{n}-2^{k_{r}}\right)\right)=-N \equiv-1 \quad\left(\bmod 2^{n}\right)$
Thus we must have $2^{k_{1}}+2^{k_{2}}+\cdots+2^{k_{r}}=2^{n}-1$, which is only possible if each element of $\{0,1,2, \ldots, n-1\}$ occurs as one of the k_{i}. This gives us

$$
N=n 2^{n}-\left(2^{0}+2^{1}+\cdots+2^{n-1}\right)=(n-1) 2^{n}+1 .
$$

In particular this means that $(n-2) 2^{n}+1$ cannot be represented as a sum of elements of A_{n}.

Solution to problem 2

Note that

$$
\begin{array}{r}
f(x)-x=\frac{1}{2}>0 \text { if } x<\frac{1}{2} \\
f(x)-x=x^{2}-x<0 \text { if } x \geq \frac{1}{2}
\end{array}
$$

We consider the interval $(0,1)$ divided into the two subintervals $I_{1}=\left(0, \frac{1}{2}\right)$ and $I_{2}=\left[\frac{1}{2}, 1\right)$. The inequality

$$
0>\left(a_{n}-a_{n-1}\right) \cdot\left(b_{n}-b_{n-1}\right)=\left(f\left(a_{n-1}\right)-a_{n-1}\right)\left(f\left(b_{n-1}-b_{n-1}\right)\right.
$$

holds if and only if a_{n-1} and b_{n-1} lie in distinct subintervals.
Let us now assume, to the contrary, that a_{k} and b_{k} always lie in the same subinterval. Consider the distance $d_{k}=\left|a_{k}-b_{k}\right|$. If both a_{k} and b_{k} lie in I_{1}, then

$$
d_{k+1}=\left|a_{k+1}-b_{k+1}\right|=\left|a_{k}+\frac{1}{2}-\left(b_{k}+\frac{1}{2}\right)\right|=d_{k}
$$

If, on the other hand, a_{k} and b_{k} both lie in I_{2}, then $a_{k}+b_{k} \geq \frac{1}{2}+\frac{1}{2}+d_{k}=1+d_{k}$, which implies

$$
d_{k+1}=\left|a_{k+1}-b_{k+1}\right|=\left|a_{k}^{2}-b_{k}^{2}\right|=\left|\left(a_{k}-b_{k}\right)\left(a_{k}+b_{k}\right)\right| \geq d_{k}\left(1+d_{k}\right)
$$

This means that the difference d_{k} is non-decreasing, and particular $d_{k} \geq d_{0}>0$ for all k.

If a_{k} and b_{k} lie in I_{2}, then

$$
d_{k+2} \geq d_{k+1} \geq d_{k}\left(1+d_{k}\right) \geq d_{k}\left(1+d_{0}\right)
$$

If a_{k} and b_{k} lie in I_{1}, then a_{k+1} and b_{k+1} both lie in I_{2}, and so we have

$$
d_{k+2} \geq d_{k+1}\left(1+d_{k+1}\right) \geq d_{k+1}\left(1+d_{0}\right) \geq d_{k}\left(1+d_{0}\right)
$$

In either case, $d_{k+2} \geq d_{k}\left(1+d_{0}\right)$, and inductively we get

$$
d_{2 m} \geq d_{0}\left(1+d_{0}\right)^{m}
$$

For sufficiently large m, the right-hand side is greater than 1 , a contradiction. Thus there must be a positive integer n such that a_{n-1} and b_{n-1} do not lie in the same subinterval, which proves the desired statement.

Solution to problem 3

Let K be the midpoint of $B C$, i.e. the centre of Γ. Notice that $A B \neq B C$ implies that $K \neq O$. Clearly the lines $O M$ and $O K$ are perpendicular bisectors of $A C$ and $B M$, respectively. Therefore, R is the intersection point of $P Q$ and $O K$.

Let N be the second point of intersection of Γ with the line $O M$. Hence $B N \|$ $A C$, and it suffices to prove that $B N$ passes trough R. Our plan for doing this is to interpret the lines $B N, O K$ and $P Q$ as the radical axes of three appropriate circles.

Let ω be the circle with diameter $B O$. Since $\angle B N O=\angle B K O=90^{\circ}$, the points N and K lie on ω.

Next we show that the points O, K, P, and Q are concyclic. To this end, let D and E be the midpoints of $B C$ and $A B$, respectively. By our assumption of triangle $A B C$, the points B, E, O, K, and D lie on ω is this order. It follows that $\angle E O R=\angle E B K=\angle K B D=\angle K O D$, so the line $K O$ externally bisects the angle $P O Q$. Since the point K is the centre of Γ, it also lies on the perpendicular bisector of $P Q$. So K coincides with the midpoint of the arc $P O Q$ of the circumcircle γ of triangle $P O Q$.

Thus the lines $O K, B N$, and $P Q$ are pairwise radical axis of the circles ω, γ and Γ. Hence they are concurrent at R, as required.

