The Viking Battle - Part 1 2015

Version: Icelandic

Daemi 1 Latum n > 2 vera heiltolu og latum A, vera mengid
A, ={2" -2k ecZ,0<k<n}

Akvardid steerstu heiltélu M, sem ekki er heegt ad rita sem summu einnar eda fleiri
ekki naudsynlega o6likra staka ar A,,.

Dzemi 2 Skilgreinum fallid f: (0,1) — (0,1) med

x—l—é , <%
xr) =
/() { el

Latum ag og by vera tveer rauntélur pannig ad 0 < ag < by < 1. Vid skilgreinum
runurnar a, og b, med a, = f(a,_1) og b, = f(b,—1) fyrir 6ll n =1,2,3,....

Synid ad til er jakvaed heiltal n pannig ad

(an — an_l) : (bn — bn—l) < 0.

Daemi 3 Latum € og O vera umhring og ummidju hvasshyrnds prihyrnings ABC
med AB > BC'. Helmingalina hornins ZABC sker Qi M # B. Latum I' vera hring
med pvermal BM . Helmingalinur hornanna ZAOB og ZBOC' skera I' i punktunum
P og @ 1 peirri r60. Punkturinn R er valinn & linunni PQ bpannig ad BR = MR.
Sannid ad BR || AC. (Hér gerum vid alltaf rad fyrir ad helmingalinur horna séu
halflinur.)



Solution to problem 1

Answer: M, = (n —2)2" + 1.

Part 1. First we prove that every integer greater than (n — 2)2™ + 1 can be repre-
sented as such a sum. This is achieved by induction on n.

For n = 2, the set A, = {2,3}. Every positive integer m except 1 can be
represented as a sum of elements of A,: asm =2+2+---4 2 if m is even, and as
m=3+2+2+---+2if mis odd.

Now consider some n > 2 and assume the induction hypothesis holds for n — 1.
Take an integer m > (n — 2)2" + 1. If m is even, then

% >(n—2)2""1> ((n—1)—2)2" '+ 1.
Hence by the induction hypothesis

% — (Qn—l _ 2k1) + (Qn—l _ 2k2) N (Qn—l _ ri)

for some k;, with 0 < k; < n — 1. It follows that
m = (2n . 2k1+1) + (2n o 2k2+1) T (2n o 2kr+1)7

giving us the desired representation as a sum of elements of A,. If m is odd, we
consider
m—(2"—=1) (n—2)2"+1-(2"—1)
> 2

=(n-32""+1.

By the induction hypothesis there is a representation of the form
m— (2" — 1)

2
for some k;, with 0 < k; <n — 1. It follows that

_ (2n71 o 2k1) 4 (2n71 o 2k2) N (2n71 o 2]67«)

m = <2n _ 2k1+1) + (2n _ 2k2+1) et (2n _ 2kr+1) + (2n - 1)’

giving us the desired representation of m once again.

Part 2. It remains to prove that there is no representation of M, = (n — 2)2" + 1.
Let N be the smallest positive integer that satisfies N =1 (mod 2"), and which can
be represented as a sum of elements of A,,. Consider the representation of IV, i.e.

N = (2" —2M) 4 (2" — 2F2) 4 ... (2" — 2F7),

where 0 < ky, ko, ..., k. <n. If k; = k; = n—1, then we can simply remove these two
terms from the sum to get a representation for N —2(2" —2"71) = N — 2" as a sum
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of elements of A,,, which contradicts our choice of N. If k; = k; = k < n—1, replace
the two terms by 2" — 251 which is also an element of A, to get a representation
for N —2(2" —2F) 27— 2% = N — 27 This is a contradiction once again. Therefor,
all k; have to be distinct, which means that

On the other hand

ok1yoka . | ok — —<(2"—2’f1)+(2”—2’“2)+- : -+(2”—2kv')) — _N=-1 (mod 2"

Thus we must have 2% + 2% 4 ... 4 2k — 27 _ 1 which is only possible if each
element of {0,1,2,...,n — 1} occurs as one of the k;. This gives us

N=n2"—(2"+2"+... 42" ) = (n—1)2" + 1.

In particular this means that (n—2)2"+1 cannot be represented as a sum of elements
of A,.



Solution to problem 2
Note that

1
f(x)—x:§>0ifx<

flx)—r=2"-2<0if x>

N — DN —

We consider the interval (0,1) divided into the two subintervals I; = (0,1) and
I, = [5,1). The inequality

0> (an —an-1)+ (bn = bn1) = (f(@n-1) = @n1)(f (b1 — bp1)

holds if and only if a,_; and b,,_; lie in distinct subintervals.
Let us now assume, to the contrary, that a; and b, always lie in the same subin-
terval. Consider the distance dy = |ay, — by|. If both a; and by lie in I;, then

1 1
A1 = |ahs1 — biyr| = ‘ak T3 <b’“ + 5)) =

If, on the other hand, a; and b, both lie in I, then a; + by, > % + % +dp, =1+ dy,
which implies

A1 = |agsr — b | = |ag, — bi] = [(ax — be) (ar + )| > di(1 + di).

This means that the difference dj, is non-decreasing, and particular d;, > dy > 0 for
all k.

If a;, and b, lie in I, then
diro > diy1 > di(1 + di) > di(1 4 dp).
If a;, and by lie in Iy, then ag,; and b,y both lie in I, and so we have
dir2 > A1 (1 4+ di1) > dyr (1 + do) > di(1 + do).
In either case, dj 2 > dip(1 + dp), and inductively we get
dam > do(1 4 do)™.

For sufficiently large m, the right-hand side is greater than 1, a contradiction. Thus
there must be a positive integer n such that a,_; and b,_; do not lie in the same
subinterval, which proves the desired statement.



Solution to problem 3

Let K be the midpoint of BC, i.e. the centre of I'. Notice that AB # BC implies
that K # O. Clearly the lines OM and OK are perpendicular bisectors of AC' and
BM, respectively. Therefore, R is the intersection point of P(Q) and OK.

Let N be the second point of intersection of I' with the line OM. Hence BN ||
AC', and it suffices to prove that BN passes trough R. Our plan for doing this is to
interpret the lines BN, OK and P() as the radical axes of three appropriate circles.

Let w be the circle with diameter BO. Since ZBNO = ZBKO = 90°, the points
N and K lie on w.

Next we show that the points O, K, P, and () are concyclic. To this end, let
D and F be the midpoints of BC' and AB, respectively. By our assumption of
triangle ABC, the points B, E, O, K, and D lie on w is this order. It follows that
LEOR=/FBK = /Z/KBD = ZKOD, so the line KO externally bisects the angle
POQ. Since the point K is the centre of I, it also lies on the perpendicular bisector
of PQ). So K coincides with the midpoint of the arc POQ of the circumcircle ~ of
triangle POQ).

Thus the lines OK, BN, and P() are pairwise radical axis of the circles w, v and
I'. Hence they are concurrent at R, as required.
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