
The Viking Battle - Part 1 2015
Version: Icelandic

Dæmi 1 Látum n ≥ 2 vera heiltölu og látum An vera mengið

An = {2n − 2k|k ∈ Z, 0 ≤ k < n}.

Ákvarðið stærstu heiltölu Mn sem ekki er hægt að rita sem summu einnar eða fleiri
ekki nauðsynlega ólíkra staka úr An.

Dæmi 2 Skilgreinum fallið f : (0, 1)→ (0, 1) með

f(x) =

{
x+ 1

2
, x < 1

2

x2 , x ≥ 1
2

Látum a0 og b0 vera tvær rauntölur þannig að 0 < a0 < b0 < 1. Við skilgreinum
runurnar an og bn með an = f(an−1) og bn = f(bn−1) fyrir öll n = 1, 2, 3, . . ..

Sýnið að til er jákvæð heiltal n þannig að

(an − an−1) · (bn − bn−1) < 0.

Dæmi 3 Látum Ω og O vera umhring og ummiðju hvasshyrnds þríhyrnings ABC
með AB > BC. Helmingalína hornins ∠ABC sker Ω í M 6= B. Látum Γ vera hring
með þvermál BM . Helmingalínur hornanna ∠AOB og ∠BOC skera Γ í punktunum
P og Q í þeirri röð. Punkturinn R er valinn á línunni PQ þannig að BR = MR.
Sannið að BR ‖ AC. (Hér gerum við alltaf ráð fyrir að helmingalínur horna séu
hálflínur.)
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Solution to problem 1
Answer: Mn = (n− 2)2n + 1.

Part 1. First we prove that every integer greater than (n− 2)2n + 1 can be repre-
sented as such a sum. This is achieved by induction on n.

For n = 2, the set An = {2, 3}. Every positive integer m except 1 can be
represented as a sum of elements of An: as m = 2 + 2 + · · ·+ 2 if m is even, and as
m = 3 + 2 + 2 + · · ·+ 2 if m is odd.

Now consider some n > 2 and assume the induction hypothesis holds for n− 1.
Take an integer m > (n− 2)2n + 1. If m is even, then

m

2
> (n− 2)2n−1 > ((n− 1)− 2)2n−1 + 1.

Hence by the induction hypothesis

m

2
= (2n−1 − 2k1) + (2n−1 − 2k2) + · · ·+ (2n−1 − 2kr)

for some ki, with 0 ≤ ki < n− 1. It follows that

m = (2n − 2k1+1) + (2n − 2k2+1) + · · ·+ (2n − 2kr+1),

giving us the desired representation as a sum of elements of An. If m is odd, we
consider

m− (2n − 1)

2
>

(n− 2)2n + 1− (2n − 1)

2
= (n− 3)2n−1 + 1.

By the induction hypothesis there is a representation of the form

m− (2n − 1)

2
= (2n−1 − 2k1) + (2n−1 − 2k2) + · · ·+ (2n−1 − 2kr)

for some ki, with 0 ≤ ki < n− 1. It follows that

m = (2n − 2k1+1) + (2n − 2k2+1) + · · ·+ (2n − 2kr+1) + (2n − 1),

giving us the desired representation of m once again.

Part 2. It remains to prove that there is no representation of Mn = (n− 2)2n + 1.
Let N be the smallest positive integer that satisfies N ≡ 1 (mod 2n), and which can
be represented as a sum of elements of An. Consider the representation of N , i.e.

N = (2n − 2k1) + (2n − 2k2) + · · ·+ (2n − 2kr),

where 0 ≤ k1, k2, . . . , kr < n. If ki = kj = n−1, then we can simply remove these two
terms from the sum to get a representation for N − 2(2n− 2n−1) = N − 2n as a sum
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of elements of An, which contradicts our choice of N . If ki = kj = k < n−1, replace
the two terms by 2n − 2k+1, which is also an element of An, to get a representation
for N−2(2n−2k)+2n−2k+1 = N−2n. This is a contradiction once again. Therefor,
all ki have to be distinct, which means that

2k1 + 2k2 + · · ·+ 2kr ≤ 20 + 21 + · · ·+ 2n−1 = 2n − 1.

On the other hand

2k1+2k2+· · ·+2kr ≡ −
(

(2n−2k1)+(2n−2k2)+· · ·+(2n−2kr)
)

= −N ≡ −1 (mod 2n)

Thus we must have 2k1 + 2k2 + · · · + 2kr = 2n − 1, which is only possible if each
element of {0, 1, 2, . . . , n− 1} occurs as one of the ki. This gives us

N = n2n − (20 + 21 + · · ·+ 2n−1) = (n− 1)2n + 1.

In particular this means that (n−2)2n+1 cannot be represented as a sum of elements
of An.
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Solution to problem 2
Note that

f(x)− x =
1

2
> 0 if x <

1

2

f(x)− x = x2 − x < 0 if x ≥ 1

2
.

We consider the interval (0, 1) divided into the two subintervals I1 = (0, 1
2
) and

I2 = [1
2
, 1). The inequality

0 > (an − an−1) · (bn − bn−1) = (f(an−1)− an−1)(f(bn−1 − bn−1)

holds if and only if an−1 and bn−1 lie in distinct subintervals.
Let us now assume, to the contrary, that ak and bk always lie in the same subin-

terval. Consider the distance dk = |ak − bk|. If both ak and bk lie in I1, then

dk+1 = |ak+1 − bk+1| =
∣∣∣ak +

1

2
−
(
bk +

1

2

)∣∣∣ = dk.

If, on the other hand, ak and bk both lie in I2, then ak + bk ≥ 1
2

+ 1
2

+ dk = 1 + dk,
which implies

dk+1 = |ak+1 − bk+1| = |a2
k − b2k| = |(ak − bk)(ak + bk)| ≥ dk(1 + dk).

This means that the difference dk is non-decreasing, and particular dk ≥ d0 > 0 for
all k.

If ak and bk lie in I2, then

dk+2 ≥ dk+1 ≥ dk(1 + dk) ≥ dk(1 + d0).

If ak and bk lie in I1, then ak+1 and bk+1 both lie in I2, and so we have

dk+2 ≥ dk+1(1 + dk+1) ≥ dk+1(1 + d0) ≥ dk(1 + d0).

In either case, dk+2 ≥ dk(1 + d0), and inductively we get

d2m ≥ d0(1 + d0)
m.

For sufficiently large m, the right-hand side is greater than 1, a contradiction. Thus
there must be a positive integer n such that an−1 and bn−1 do not lie in the same
subinterval, which proves the desired statement.
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Solution to problem 3
Let K be the midpoint of BC, i.e. the centre of Γ. Notice that AB 6= BC implies
that K 6= O. Clearly the lines OM and OK are perpendicular bisectors of AC and
BM , respectively. Therefore, R is the intersection point of PQ and OK.

Let N be the second point of intersection of Γ with the line OM . Hence BN ‖
AC, and it suffices to prove that BN passes trough R. Our plan for doing this is to
interpret the lines BN , OK and PQ as the radical axes of three appropriate circles.

Let ω be the circle with diameter BO. Since ∠BNO = ∠BKO = 90◦, the points
N and K lie on ω.

Next we show that the points O, K, P , and Q are concyclic. To this end, let
D and E be the midpoints of BC and AB, respectively. By our assumption of
triangle ABC, the points B, E, O, K, and D lie on ω is this order. It follows that
∠EOR = ∠EBK = ∠KBD = ∠KOD, so the line KO externally bisects the angle
POQ. Since the point K is the centre of Γ, it also lies on the perpendicular bisector
of PQ. So K coincides with the midpoint of the arc POQ of the circumcircle γ of
triangle POQ.

Thus the lines OK, BN , and PQ are pairwise radical axis of the circles ω, γ and
Γ. Hence they are concurrent at R, as required.
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