The Viking Battle - Part 12014 Version: English

Problem 1 Let \mathbb{N} be the set of positive integers. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
m^{2}+f(n) \mid m f(m)+n
$$

for all positive integers m and n.

Problem 2 Let ω be the circumcircle of triangle $A B C$. Denote by M and N the midpoints of the sides $A B$ and $A C$, respectively, and denote by T the midpoint of the arc $B C$ of ω not containing A. The circumcircles of the triangles $A M T$ and $A N T$ intersect the perpendicular bisectors of $A C$ and $A B$ at points X and Y, respectively. Assume that X and Y lie inside the triangle $A B C$. The lines $M N$ and $X Y$ intersect at K. Prove that $K A=K T$.

Problem 3 A crazy physicist discovered a new kind of particle which he called an imon, after some of them mysteriously appeared in his lab. Some pairs of imons are entangled, and each imon can participate in many entanglement relations. The physicist has found a way to perform the following two kinds of operations with these particles, one operation at a time.
(i) If some imon is entangled with an odd number of other imons in his lab, then the physicist can destroy it.
(ii) At any moment, he may double the whole family of imons in his lab by creating a copy I^{\prime} of each imon I. During this procedure, the two copies I^{\prime} and J^{\prime} become entangled if and only if I and J are entangled, and each copy I^{\prime} becomes entangled with its original imon I; no other entanglements occur or disappear at this moment.

Prove that the physicist may apply a sequence of such operations resulting in a family of imons, no two of which are entangled.

