
The Viking Battle - Part 1 2014
Problems and solutions

Problem 1 Let N be the set of positive integers. Find all functions f : N→ N such
that

m2 + f(n) | mf(m) + n

for all positive integers m and n.

Solution 1 Setting (m,n) = (f(1), 1) gives

f(1)2 + f(1) | f(1)f(f(1)) + 1,

and hence f(1) | 1. Thus f(1) = 1.
When (m,n) = (m, 1) and (m,n) = (1,m) we get

m2 + 1 | mf(m) + 1 and 1 + f(n) | 1 + n

for all positive integers n and m. This proves that f(m) ≥ m and f(n) ≤ n. Hence the
only possible function is f(n) ≡ n.

It is easy to see that the function f(n) ≡ n is a solution.

Solution 2 Setting (m,n) = (2, 2) gives

4 + f(2) | 2f(2) + 2.

Since 2f(2) + 2 < 2(4 + f(2)), we must have 2f(2) + 2 = 4 + f(2), so f(2) = 2. Now
when m = 2 we have 4 + f(n) | 4 + n which implies that f(n) ≤ n for all n.

Further n = m tells that

n2 + f(n) | nf(n) + n

and hence n2 + f(n) ≤ nf(n) + n which we rewrites as f(n) ≥ n2−n
n−1 = n for all n > 1.

Hence f(n) = n for all n > 1, and it is easy to see that f(1) = 1 as well.
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Problem 2 Let ω be the circumcircle of triangle ABC. Denote by M and N the
midpoints of the sides AB and AC, respectively, and denote by T the midpoint of
the arc BC of ω not containing A. The circumcircles of the triangles AMT and ANT
intersect the perpendicular bisectors of AC and AB at points X and Y , respectively.
Assume that X and Y lie inside the triangle ABC. The lines MN and XY intersect
at K. Prove that KA = KT .

Solution Let O be the center of ω, thus O is the intersection of MY and NX. Let
l be the perpendicular bisector of AT and notice that l passes through O. Denote by
r the reflection about l. We want to prove that r(M) = X and r(N) = Y since this
proves that the intersection point K of MN and XY is on l and hence KA = KT .

A

B C

O

T

K M N

X

Y

ω
γ

l

Since AT is the angle bisector of ∠BAC, the line r(AB) is parallel to AC. Since
OM ⊥ AB and ON ⊥ AC, this means that the line r(OM) is parallel to the line
ON and passes through O, so r(OM) = ON . Finally the circumcircle γ of the triangle
AMT is symmetric about l, so r(γ) = γ. Thus the point M maps to the common point
of ON and the arc AMT of γ, that is r(M) = X. Similarly r(N) = X, and then we
are done.
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Problem 3 A crazy physicist discovered a new kind of particle which he called an
imon, after some of them mysteriously appeared in his lab. Some pairs of imons are
entangled, and each imon can participate in many entanglement relations. The physicist
has found a way to perform the following two kinds of operations with these particles,
one operation at a time.

(i) If some imon is entangled with an odd number of other imons in his lab, then
the physicist can destroy it.

(ii) At any moment, he may double the whole family of imons in his lab by creating
a copy I ′ of each imon I. During this procedure, the two copies I ′ and J ′ become
entangled if and only if I and J are entangled, and each copy I ′ becomes entang-
led with its original imon I; no other entanglements occur or disappear at this
moment.

Prove that the physicist may apply a sequence of such operations resulting in a family
of imons, no two of which are entangled.

Solution Let us consider a graph with the imons as vertices, and two imons being
connected by an edge if and only if they are entangled. A proper colouring of a graph
G is a colouring of its vertices in several colours so that every two connected vertices
have different colours. Let c(G) be the minimal number of colours in a proper colouring
of G. We want to prove that if a graph G with c(G) = n, n > 1, then one may perform
a sequence of operations on G resulting in a graph G′ with c(G′) < n. By applying this
several times, we get a graph that has a proper colouring of one colour, and hence a
graph with no edges which was to be proved.

Now assume that G is a graph with c(G) = n, n > 1. Let us repeatedly apply
operation (i) to any vertex with odd degree as long as it is possible. This results in a
graph G1 with c(G1) ≤ n. If c(G1) < n we are done. If not we colour the vertices of G1

in n colours 1, 2, . . . , n such that it is a proper colouring. We then apply operation (ii)
to this graph and get a new graph G2. We colour the vertex I ′ in colour k+ 1 (mod n)
where k is the colour of the vertex I. Then two connected original vertices still have
different colours, and so do their two connected copies. Since n > 1 the vertices I and
I ′ have different colours as well. Thus c(G2) = n. Now all the vertices in G2 have an
odd degree. If we look at all the vertices of colour n, no two of these are connected.
Hence by applying (i) several times we can delete all these vertices and get a new graph
G′ with c(G′) ≤ n− 1 < n. This ends the proof.
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