The Viking Battle - Part 1 2013 Problems and solutions

Problem 1 Several positive integers are written in a row. Iteratively, Alice chooses two adjacent numbers x and y such that x > y and x is to the left of y, and replaces the pair (x, y) by either (y + 1, x) or (x - 1, x). Prove that she can perform only finitely many such iterations.

Solution We solve the more general problem where x and y are not necessarily adjacent in the row and the operation consists in replacing (x, y) with (z, x), where z is any number in the interval $y \le z \le x$. Since for x > y we have $y \le y + 1, x - 1 \le x$, the given problem is a special case of this one.

First note that the allowed operation does not change the maximum M of the sequence, and consider the sum

$$S = a_1 + 2a_2 + \dots + na_n,$$

where a_i is the *i*th number in the row. In each step, the rightmost number increases by x - y and the leftmost one decreases by at most this difference. Since the rightmost number has the highest weight in the sum S, this sum therefore increases. Since S cannot exceed $(1 + 2 + \cdots + n)M$, the process then stops after a finite number of operations.

Problem 2 Let ABCD be a cyclic quadrilateral whose diagonals AC and BD meet at E. The extensions of the sides AD and BC beyond A and B meet at F. Let G be the point such that ECGD is a parallelogram, and let H be the image of E under reflection in AD. Prove that D, H, F, and G are concyclic.

Solution Since $\angle FAB = \angle FCD$, a transformation composed of a homothety with centre F and the reflection in the bisector of $\angle AFB$ maps segment AB to segment CD. Since $\triangle ABE \sim \triangle DCE \sim \triangle CDG$, this transformation maps E to G and we have $\angle FGD = \angle FEB = 180^\circ - \angle FED = 180^\circ - \angle FHD$. Hence the assertion follows.

Problem 3 Find all triples (x, y, z) of positive integers such that $x \le y \le z$ and

$$x^{3}(y^{3} + z^{3}) = 2012(xyz + 2).$$

Solution First note that x divides $2012 \cdot 2 = 2^3 \cdot 503$. If 503 divides x then the right-hand side has to be divisible by 503^3 and hence 503^2 divides xyz + 2. This is impossible since 503 divides x. Now x divides 2^3 , and $x = 2^m$, $m \in \{0, 1, 2, 3\}$. If $m \ge 2$, then 2^6 divides the left-hand side but not the right-hand side, hence x = 1 or x = 2. This reduces the equation to

$$y^{3} + z^{3} = 2012(yz + 2)$$
 if $x = 1$,
 $y^{3} + z^{3} = 503(yz + 1)$ if $x = 2$.

In both cases 503 divides $y^3 + z^3$, and hence $y^3 \equiv (-z)^3 \pmod{503}$. If 503 does not divide z and y, this leads to $(y(-z)^{-1})^3 \equiv 1 \pmod{503}$. By Fermat's little theorem $(y(-z)^{-1})^{502} \equiv 1 \pmod{503}$ and hence $y(-z)^{-1} \equiv (y(-z)^{-1})^{\gcd(3,502)} \equiv 1 \pmod{503}$, thus $y \equiv -z \pmod{503}$. If 503 divides z it also divides y, and hence in both cases y + z is divisible by 503.

Let y + z = 503k, $k \ge 1$. In view of $y^3 + z^3 = (y + z)((z - y)^2 + yz)$ the

equation is reduced to

$$k(z-y)^{2} + (k-4)yz = 8$$
 if $x = 1$,
 $k(z-y)^{2} + (k-1)yz = 1$ if $x = 2$.

If x = 1 we have $(k - 4)yz \le 8$, which implies $k \le 4$ since $z \ge \frac{503}{2}$. If we look at the original equation, it is clear that in this case $y^3 + z^3$ is even, and hence that $k \cdot 503$ is even too, meaning that k is even. Thus k = 2 or k = 4. Clearly the reduced equation has no solutions for k = 4. If k = 2then $(z - y)^2 - yz = 4$ and hence $2^2 \cdot 503^2 - 4 = (z + y)^2 - 4 = 5yz$. However $2^2 \cdot 503^2 - 4$ is not divisible by 5. Therefore there are no solutions in the case x = 1.

If x = 2 then $0 \le (k-1)yz \le 1$, and since $z \ge \frac{503}{2}$ we have k = 1. Now z - y = 1 and z + y = 503. This leads to y = 251 and z = 252. It is easy to see that (2, 251, 252) is a solution.

In summary the triple (2, 251, 252) is the only solution.