The Viking Battle - Part 12013 Problems and solutions

Problem 1 Several positive integers are written in a row. Iteratively, Alice chooses two adjacent numbers x and y such that $x>y$ and x is to the left of y, and replaces the pair (x, y) by either $(y+1, x)$ or $(x-1, x)$. Prove that she can perform only finitely many such iterations.

Solution We solve the more general problem where x and y are not necessarily adjacent in the row and the operation consists in replacing (x, y) with (z, x), where z is any number in the interval $y \leq z \leq x$. Since for $x>y$ we have $y \leq y+1, x-1 \leq x$, the given problem is a special case of this one.

First note that the allowed operation does not change the maximum M of the sequence, and consider the sum

$$
S=a_{1}+2 a_{2}+\cdots+n a_{n}
$$

where a_{i} is the i th number in the row. In each step, the rightmost number increases by $x-y$ and the leftmost one decreases by at most this difference. Since the rightmost number has the highest weight in the sum S, this sum therefore increases. Since S cannot exceed $(1+2+\cdots+n) M$, the process then stops after a finite number of operations.

Problem 2 Let $A B C D$ be a cyclic quadrilateral whose diagonals $A C$ and $B D$ meet at E. The extensions of the sides $A D$ and $B C$ beyond A and B meet at F. Let G be the point such that $E C G D$ is a parallelogram, and let H be the image of E under reflection in $A D$. Prove that D, H, F, and G are concyclic.

Solution Since $\angle F A B=\angle F C D$, a transformation composed of a homothety with centre F and the reflection in the bisector of $\angle A F B$ maps segment $A B$ to segment $C D$. Since $\triangle A B E \sim \triangle D C E \sim \triangle C D G$, this transformation maps E to G and we have $\angle F G D=\angle F E B=180^{\circ}-\angle F E D=$ $180^{\circ}-\angle F H D$. Hence the assertion follows.

Problem 3 Find all triples (x, y, z) of positive integers such that $x \leq y \leq z$ and

$$
x^{3}\left(y^{3}+z^{3}\right)=2012(x y z+2)
$$

Solution First note that x divides $2012 \cdot 2=2^{3} \cdot 503$. If 503 divides x then the right-hand side has to be divisible by 503^{3} and hence 503^{2} divides $x y z+2$. This is impossible since 503 divides x. Now x divides 2^{3}, and $x=2^{m}, m \in\{0,1,2,3\}$. If $m \geq 2$, then 2^{6} divides the left-hand side but not the right-hand side, hence $x=1$ or $x=2$. This reduces the equation to

$$
\begin{aligned}
& y^{3}+z^{3}=2012(y z+2) \text { if } x=1 \\
& y^{3}+z^{3}=503(y z+1) \text { if } x=2
\end{aligned}
$$

In both cases 503 divides $y^{3}+z^{3}$, and hence $y^{3} \equiv(-z)^{3}(\bmod 503)$. If 503 does not divide z and y, this leads to $\left(y(-z)^{-1}\right)^{3} \equiv 1(\bmod 503)$. By Fermat's little theorem $\left(y(-z)^{-1}\right)^{502} \equiv 1(\bmod 503)$ and hence $y(-z)^{-1} \equiv$ $\left(y(-z)^{-1}\right)^{\operatorname{gcd}(3,502)} \equiv 1(\bmod 503)$, thus $y \equiv-z(\bmod 503)$. If 503 divides z it also divides y, and hence in both cases $y+z$ is divisible by 503 .

Let $y+z=503 k, k \geq 1$. In view of $y^{3}+z^{3}=(y+z)\left((z-y)^{2}+y z\right)$ the
equation is reduced to

$$
\begin{aligned}
& k(z-y)^{2}+(k-4) y z=8 \text { if } x=1, \\
& k(z-y)^{2}+(k-1) y z=1 \text { if } x=2 .
\end{aligned}
$$

If $x=1$ we have $(k-4) y z \leq 8$, which implies $k \leq 4$ since $z \geq \frac{503}{2}$. If we look at the original equation, it is clear that in this case $y^{3}+z^{3}$ is even, and hence that $k \cdot 503$ is even too, meaning that k is even. Thus $k=2$ or $k=4$. Clearly the reduced equation has no solutions for $k=4$. If $k=2$ then $(z-y)^{2}-y z=4$ and hence $2^{2} \cdot 503^{2}-4=(z+y)^{2}-4=5 y z$. However $2^{2} \cdot 503^{2}-4$ is not divisible by 5 . Therefore there are no solutions in the case $x=1$.

If $x=2$ then $0 \leq(k-1) y z \leq 1$, and since $z \geq \frac{503}{2}$ we have $k=1$. Now $z-y=1$ and $z+y=503$. This leads to $y=251$ and $z=252$. It is easy to see that $(2,251,252)$ is a solution.

In summary the triple $(2,251,252)$ is the only solution.

