39th Nordic Mathematical Contest 25 March, 2025

Time allowed is 4 hours. Each problem is worth 7 points. The only permitted aids are writing and drawing materials.

1. Let n be a positive integer greater than 2. Find all functions $f: \mathbb{Z} \to \mathbb{Z}$ satisfying

$$(f(x+y))^n = f(x^n) + f(y^n)$$
, for all integers x, y .

- **2.** Let p be a prime and suppose $2^{2p} \equiv 1 \pmod{2p+1}$. Prove that 2p+1 is prime.¹
- **3.** Let ABC be an acute triangle with orthocenter H and circumcenter O. Let E and F be points on the line segments AC and AB respectively such that AEHF is a parallelogram. Prove that |OE| = |OF|.
- 4. Denote by S_n the set of all permutations of the set $\{1, 2, ..., n\}$. Let $\sigma \in S_n$ be a permutation. We define the *displacement* of σ to be the number $d(\sigma) = \sum_{i=1}^{n} |\sigma(i) i|$. We say that σ is maximally displacing if $d(\sigma)$ is the largest possible, i.e. if $d(\sigma) \ge d(\pi)$, for all $\pi \in S_n$.
 - a) Suppose σ is a maximally displacing permutation of $\{1, 2, \ldots, 2024\}$. Prove that $\sigma(i) \neq i$, for all $i \in \{1, 2, \ldots, 2024\}$.
 - b) Does the statement of part a) hold for permutations of $\{1, 2, \ldots, 2025\}$?

¹This is a special case of Pocklington's theorem. A proof of this special case is required.