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Problem 1 A set of different positive integers is called meaningful if for any finite non-
empty subset the corresponding arithmetic and geometric means are both integers.

a) Does there exist a meaningful set which consists of 2019 numbers?

b) Does there exist an infinite meaningful set?

Note: The geometric mean of the non-negative numbers a1, a2, . . . , an is defined as n
√
a1a2 · · · an

Problem 2 Let a, b, c be the side lengths of a right angled triangle with c > a, b.
Show that

3 <
c3 − a3 − b3

c(c− a)(c− b)
≤
√
2 + 2.

Problem 3 The quadrilateral ABCD satisfies ∠ACD = 2∠CAB, ∠ACB = 2∠CAD
and CB = CD.

Show that ∠CAB = ∠CAD.

Problem 4 Let n be an integer with n ≥ 3 and assume that 2n vertices of a regular
(4n + 1)-gon are coloured. Show that there must exist three of the coloured vertices
forming an isosceles triangle.



Solution 1 a) Notice that {2019! · 12019!, 2019! · 22019!, . . . , 2019! · 20192019!} is such a set.
Observe that if all the elements are divisible by 2019! then the arithmetic means will be
integer for all the subsets. Also, if A is a set such that the geometric means are integer
for all non-empty subsets and the set B is obtained from the set A by multiplying each
element with with a given integer c then all the non-empty subsets of B will have an
integer geometric mean, since

k
√
cai1cai2 · · · caik = c k

√
ai1ai2 · · · aik .

It is thus sufficient to find a set of 2019 positive integers such that the geometric mean of
every non-empty subset in an integer. Now, for an integer a the number k

√
a2019! = a

2019!
k

for all integers 1 ≤ k ≤ 2019 so {12019!, 22019!, . . . , 20192019!} is a set such that the geometric
mean of every non-empty subset is an integer.
b) Assume there exist such a set A and let n,m, a1, a2, . . . , am−1 be distinct elements in
A with n < m. Then n+a1+a2+···+am−1

m
and m+a1+a2+···+am−1

m
are integers and also their

difference

m+ a1 + a2 + · · ·+ am−1

m
− n+ a1 + a2 + · · ·+ am−1

m
=

m− n

m
.

Therefore, we have n
m

is an integer and since m and n are positive integers we have m ≤ n
which is a contradiction.

Solution 2 Observe that

c3 − a3 − b3 = ca2 + cb2 − a3 − b3 = a2(c− a) + b2(c− b) =

(c2 − b2)(c− a) + (c2 − b2)(c− b) = (c− a)(c− b)(c+ a+ c+ b)

Therefore, it is equivalent to prove that

c < a+ b ≤
√
2c

The left inequality we get from the triangle inequality and the right inequality we get
from

a+ b ≤
√
2c⇔ (a+ b)2 ≤ 2c2 = 2a2 + 2b2 ⇔ 0 ≤ (a− b)2

Solution 3 Let the angle bisectors from angle C in triangle ACB and ACD intersect AB
and AD in points E and F respectively. From ∠ACE = ∠CAD it follows that CE and
AD are parallel. Similarly CF and AB are parallel. Hence AECF is a parallelogram.
From this it follows that ∠BEC = ∠BAD = ∠CFD.



A

B

C

DE

F

The angle bisector theorem yields

BE

CF
=

BE

AE
=

CB

CA
=

CD

CA
=

DF

AF
=

DF

CE
,

which gives
|BE| · |CE| = |DF | · |CF |.

By the sine area formula we obtain that BCE have DCF have equal area. Hence triangles
BCA and DCA also have equal areal. By the sine area formula we now get

sin(∠ACB) = sin(∠DCA)

Since ABCD is a quadrilateral, ∠ACB +∠DCA 6= 180 and hence we conclude from the
above that ∠CAB = ∠CAD.

Solution 4 Assume that it is possible to color 2n of the vertices of a 4n+1-gon such that
there are no three colored vertices forming an isosceles triangle. Enumerate the vertices
consecutively as H−2n, H−2n+1, . . . , H0, H1, H2, . . . , H2n and consider first the case where
there are two colored neighboring vertices. Assume wlog that the vertices H0 and H1 are
colored. Then at most one of the vertices H−i and Hi are colored for all i = 1, 2, . . . , 2n
since these form an isosceles triangle with H0. Similarly at most one of H−i and Hi+2 are
colored for all i = 1, 2, . . . , 2n−2, and at most one of H−(2n−1) and H−2n are colored since
these form an isosceles triangles with H1. The three vertices H0, H1, Hi, i = 2,−1,−2n
also form isoceles triangles and hence H−1, H2, H−2n are not colored. It follows that no
consecutive vertices in the two strings

H−2 −H4 −H−4 −H6 − . . .−H2n−2 −H−(2n−2) −H2n

H3 −H−3 −H5 −H−5 − . . .−H2n−1 −H−(2n−1)

are colored. Since each string contains an even amount of vertices, at most half of each
string are colored and this is obtained only when every second vertex is colored in each
string. By counting we see that each string contains 2n− 2 vertices and we conclude that
every second vertex is colored in each string. Because n ≥ 3 at least one of the isoceles
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triangles H0H−2H−4, H1H3H5 or H2n−2H2nH−(2n−1) must be colored. Hence there are no
colored neighboring vertices.

If there are no colored neighboring vertices we can assume wlog that Hi is colored for
all odd i, but then H1H3H5 is an isosceles colored triangle. Hence we have a contradiction,
showing that there must neccesarily exists 3 colored vertices forming an isosceles triangle.
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