
Baltic Way
Reykjavík, November 11th - 15th Solutions

Problem 1. Let 𝑛 be a positive integer. Find all functions 𝑓 ∶ ℝ → ℝ that satisfy the equation
(𝑓 (𝑥))𝑛𝑓 (𝑥 + 𝑦) = (𝑓 (𝑥))𝑛+1 + 𝑥𝑛𝑓 (𝑦)

for all 𝑥, 𝑦 ∈ ℝ.

Solution. The functions we are looking for are 𝑓 ∶ ℝ → ℝ, 𝑓 (𝑥) = 0 and 𝑓 ∶ ℝ → ℝ, 𝑓 (𝑥) = 𝑥.
For 𝑛 even 𝑓 ∶ ℝ → ℝ, 𝑓 (𝑥) = −𝑥 is also a solution.

Throughout the solution, 𝑃 (𝑥0, 𝑦0) will denote the substitution of 𝑥0 and 𝑦0 for 𝑥 and 𝑦, respectively,
in the given equation.

𝑃 (𝑥, 0) for 𝑥 ≠ 0 gives
𝑓 (𝑥)𝑛+1 = 𝑓 (𝑥)𝑛+1 + 𝑥𝑛𝑓 (0)

and therefore
𝑓 (0) =

𝑓 (𝑥)𝑛+1 − 𝑓 (𝑥)𝑛+1

𝑥𝑛 = 0.

𝑃 (𝑥,−𝑥) for 𝑥 ≠ 0 gives
0 = 𝑓 (𝑥)𝑛𝑓 (0) = 𝑓 (𝑥)𝑛+1 + 𝑥𝑛𝑓 (−𝑥),

and therefore
𝑓 (−𝑥) = −

𝑓 (𝑥)𝑛+1

𝑥𝑛 .

Applying this identity twice, we get

𝑓 (𝑥) = 𝑓 (−(−𝑥)) = −
𝑓 (−𝑥)𝑛+1

(−𝑥)𝑛
= −

(

−𝑓 (𝑥)𝑛+1

𝑥𝑛

)𝑛+1

(−𝑥)𝑛
=

𝑓 (𝑥)𝑛2+2𝑛+1

𝑥𝑛2+2𝑛
,

which after rearranging yields
𝑓 (𝑥)(𝑥𝑛2+2𝑛 − 𝑓 (𝑥)𝑛2+2𝑛) = 0.

If there exists an 𝑎 ≠ 0 for which 𝑓 (𝑎) = 0, then 𝑃 (𝑎, 𝑦) yields
0 = 𝑎𝑛𝑓 (𝑦),

which means that 𝑓 (𝑦) = 0 for all 𝑦 ∈ ℝ. This is a solution to the equation for all 𝑛.
If instead 𝑓 (𝑥) ≠ 0 for all 𝑥 ≠ 0, then we have

𝑥𝑛2+2𝑛 = 𝑓 (𝑥)𝑛2+2𝑛.

If 𝑛 is odd, then so is 𝑛(𝑛 + 2) = (𝑛2 + 2𝑛), meaning 𝑓 (𝑥) = 𝑥 for all 𝑥 ∈ ℝ. This is a solution to
the equation.
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If 𝑛 is even, then so is 𝑛(𝑛 + 2) = (𝑛2 + 2𝑛), meaning 𝑓 (𝑥) = ±𝑥 for all 𝑥 ∈ ℝ. Both 𝑓 (𝑥) = 𝑥 and
𝑓 (𝑥) = −𝑥 are solutions to the equation. In all other cases there must exist 𝑥, 𝑦 ≠ 0 such that 𝑓 (𝑥) = 𝑥
and 𝑓 (𝑦) = −𝑦. Then 𝑃 (𝑥, 𝑦) yields

𝑥𝑛𝑓 (𝑥 + 𝑦) = 𝑥𝑛+1 − 𝑥𝑛𝑦,

which after dividing by 𝑥𝑛 ≠ 0 yields
𝑓 (𝑥 + 𝑦) = 𝑥 − 𝑦.

Since (𝑓 (𝑥))2 = 𝑥2 for all 𝑥 ∈ ℝ, we have (𝑥 + 𝑦)2 = (𝑥 − 𝑦)2. That is 4𝑥𝑦 = 0 which is impossible as
𝑥, 𝑦 ≠ 0.

There are therefore no more solutions to the equation.

Problem 2. Let 𝑎, 𝑏, 𝑐 be the side lengths of a triangle. Prove that
3
√

(𝑎2 + 𝑏𝑐)(𝑏2 + 𝑐𝑎)(𝑐2 + 𝑎𝑏) > 𝑎2 + 𝑏2 + 𝑐2

2
.

Solution. We claim that
𝑎2 + 𝑏𝑐 > 𝑎2 + 𝑏2 + 𝑐2

2
,

which will finish the proof. Note that the claimed inequality is equivalent to

𝑎2 + 𝑏𝑐 > 𝑎2 + 𝑏2 + 𝑐2

2
⟺ 2𝑎2 + 2𝑏𝑐 > 𝑎2 + 𝑏2 + 𝑐2

⟺ 𝑎2 > (𝑏 − 𝑐)2 ⟺ 𝑎 > |𝑏 − 𝑐|,

which holds due to the assumption of 𝑎, 𝑏, 𝑐 being side lengths of a triangle.

Problem 3. Determine all infinite sequences (𝑎1, 𝑎2,…) of positive integers satisfying
𝑎2𝑛+1 = 1 + (𝑛 + 2021)𝑎𝑛

for all 𝑛 ≥ 1.
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Solution. Clearly (𝑎𝑛)∞𝑛=1 = (𝑛 + 2019)∞𝑛=1 is a solution. We claim that it is the only one.
Assume (𝑎𝑛)∞𝑛=1 is a solution. Let (𝑏𝑛)∞𝑛=1 = (𝑎𝑛 − 𝑛)∞𝑛=1. We claim:

1. If 𝑏𝑛 < 2019, then 2019 > 𝑏𝑛+1 > 𝑏𝑛.
2. If 𝑏𝑛 > 2019, then 2019 < 𝑏𝑛+1 < 𝑏𝑛.
It is clear that these claims imply that 𝑏𝑛 = 2019 for all 𝑛.
Let us prove the claims:

1. Clearly 𝑎𝑛 < 𝑛 + 2019 implies that 𝑎𝑛+1 < (𝑛 + 1) + 2019 which already proves one part of the
inequality. Suppose that 𝑏𝑛+1 ≤ 𝑏𝑛. Then

(𝑛 + 1 + 𝑏𝑛)2 ≥ 𝑎2𝑛+1 = 1 + (𝑛 + 2021)(𝑛 + 𝑏𝑛).

Expanding gives
(𝑛 + 𝑏𝑛)(𝑏𝑛 − 2019) ≥ 0

which shows that 𝑏𝑛 ≥ 2019 contradicting our assumption.
2. It follows in exactly the same way, by just reversing all the inequality signs.

Problem 4. Let Γ be a circle in the plane and 𝑆 be a point on Γ. Mario and Luigi drive around the
circle Γ with their go-karts. They both start at 𝑆 at the same time. They both drive for exactly 6 minutes
at constant speed counterclockwise around the track. During these 6 minutes, Luigi makes exactly one
lap around Γ while Mario, who is three times as fast, makes three laps.

While Mario and Luigi drive their go-karts, Princess Daisy positions herself such that she is always
exactly in the middle of the chord between them. When she reaches a point she has already visited, she
marks it with a banana.

How many points in the plane, apart from 𝑆, are marked with a banana by the end of the race?

Solution 1. Without loss of generality, we assume that Γ is the unit circle and 𝑆 = (1, 0). Three points
are marked with bananas:

(i) After 45 seconds, Luigi has passed through an arc with a subtended angle of 45◦ and is at the
point (√2∕2,

√

2∕2), whereas Mario has passed through an arc with a subtended angle of 135◦
and is at the point (−√2∕2,

√

2∕2). Therefore Daisy is at the point (0,√2∕2) after 45 seconds.
After 135 seconds, Mario and Luigi’s positions are exactly the other way round, so the princess
is again at the point (0,√2∕2) and puts a banana there.
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(ii) Similarly, after 225 seconds and after 315 seconds, Princess Daisy is at the point (0,−√2∕2) and
puts a banana there.

(iii) After 90 seconds, Luigi is at (0, 1) and Mario at (0,−1), so that Daisy is at the origin of the plane.
After 270 seconds, Mario and Luigi’s positions are exactly the other way round, hence Princess
Daisy drops a banana at the point (0, 0).

We claim that no other point in the plane, apart from these three points and 𝑆, is marked with a
banana. Let 𝑡1 and 𝑡2 be two different times when Daisy is at the same place. For 𝑛 ∈ {1, 2} we write
Luigis position at time 𝑡𝑛 as a complex number 𝑧𝑛 = exp(𝑖𝑥𝑛) with 𝑥𝑛 ∈]0, 2𝜋[. At this time, Mario is
located at 𝑧3𝑖 and Daisy at (𝑧3𝑖 +𝑧𝑖)∕2. According to our assumption we have (𝑧31+𝑧1)∕2 = (𝑧32+𝑧2)∕2 or,
equivalently, (𝑧1−𝑧2)(𝑧21+𝑧1𝑧2+𝑧22+1) = 0. We have 𝑧1 ≠ 𝑧2, so that we must have 𝑧21+𝑧1𝑧2+𝑧22 = −1.

We proceed with an observation of the structure of Γ as a set of complex numbers. Suppose that
𝑧 ∈ Γ ⧵ {𝑆}. Then 𝑧 + 1 + 𝑧−1 ∈ Γ if and only if 𝑧 ∈ {𝑖,−1,−𝑖}. For a proof of the observation note
that 𝑧 + 1 + 𝑧−1 = 𝑧 + 1 + 𝑧 is a real number for every 𝑧 ∈ ℂ with norm |𝑧| = 1. So it lies on the unit
circle if and only if it is equal to 1, in which case the real part of 𝑧 is equal to 0, or it is equal to −1, in
which case the real part of 𝑧 is equal to −1. We apply the observation to the number 𝑧 = 𝑧1∕𝑧2, which
satisfies the premise since 𝑧 + 1 + 𝑧 = −𝑧1 ⋅ 𝑧2 ∈ Γ. Therefore, one of the following cases must occur.

(i) We have 𝑧 = ±𝑖, that is, 𝑧1 = ±𝑖𝑧2. Without loss of generality we may assume 𝑧2 = 𝑖𝑧1. It
follows that −1 = 𝑧21 + 𝑧1𝑧2 + 𝑧22 = 𝑖𝑧21, so that 𝑧1 = exp(𝑖𝜋∕4) or 𝑧1 = exp(5𝑖𝜋∕4). In the
former case (𝑧1, 𝑧2) = (exp(𝑖𝜋∕4), exp(3𝑖𝜋∕4)), which matches case (1) above. In the latter case
(𝑧1, 𝑧2) = (exp(5𝑖𝜋∕4), exp(7𝑖𝜋∕4)), which matches case (2) above.

(ii) We have 𝑧 = −1, that is, 𝑧2 = −𝑧1. It follows that −1 = 𝑧21 + 𝑧1𝑧2 + 𝑧22 = 𝑧21, so that 𝑧1 = 𝑖 or
𝑧1 = −𝑖. This matches case (3) above.

Γ

Depiction of the path Daisy takes
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Solution 2. We represent the position of Luigi and Mario by (𝑡, 3𝑡) (mod 1), so when Luigi is at angle
𝑡 ⋅ 2𝜋, Mario is at an angle 3𝑡 ⋅ 2𝜋.

A chord (if it is not the diameter is determined by its midpoint. Therefore Daisy revisit a location
only if

(𝑥, 3𝑥) ≡ (3𝑦, 𝑦) (mod 1)

for different value of 𝑥, 𝑦 (mod 1). By inspection, the three locations are visited twice.

0 1

1
1

1
3

1
3

2
3

2
3

1
3

1
3

2
3

2
3

Problem 5. Let 𝑥, 𝑦 ∈ ℝ be such that 𝑥 = 𝑦(3 − 𝑦)2 and 𝑦 = 𝑥(3 − 𝑥)2. Find all possible values of
𝑥 + 𝑦.

Solution 1. The set {0, 3, 4, 5, 8} contains all possible values for 𝑥 + 𝑦.
A pair (𝑥, 𝑥) ∈ ℝ2 satisfies the equations if and only if 𝑥 = 𝑥(3 − 𝑥)2, and it is easy to see that this

cubic equation has the solution set {0, 2, 4}. These pairs give us 0, 4 and 8 as possible values for 𝑥+ 𝑦.
Assuming 𝑥 ≠ 𝑦 let 𝑠 be the sum 𝑥+ 𝑦 and 𝑝 be the product 𝑥𝑦. Subtracting the first equation from

the second and cancelling out the term 𝑥 − 𝑦 we get
𝑝 = 𝑠2 − 6𝑠 + 10.

Adding the two equations gives
0 = 𝑠(𝑠2 − 3𝑝) − 6(𝑠2 − 2𝑝) + 8𝑠.

Together the equations give
0 = 𝑠3 − 12𝑠2 + 47𝑠 − 60 = (𝑠 − 3)(𝑠 − 4)(𝑠 − 5).
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The only possible values for 𝑥 + 𝑦 when 𝑥 ≠ 𝑦 are therefore 3, 4 and 5. We have already seen that
𝑥 + 𝑦 = 4 has a solution 𝑥 = 𝑦 = 2.

Next we investigate the case 𝑥 + 𝑦 = 3. Here we can simplify the given equations as 𝑥 = 𝑦𝑥2 and
𝑦 = 𝑥𝑦2. The number 𝑥 cannot be zero in this case, since otherwise 𝑦 and 𝑘 would also be zero. We
can conclude that 𝑥𝑦 = 1. The equations 𝑥 + 𝑦 = 3 and 𝑥𝑦 = 1, according to Vieta’s Theorem, imply
that 𝑥 and 𝑦 are the solutions of the equation 𝜆2 − 3𝜆 + 1 = 0. Hence

(𝑥, 𝑦) =

(

3 +
√

5
2

,
3 −

√

5
2

)

or (𝑥, 𝑦) =

(

3 −
√

5
2

,
3 +

√

5
2

)

and it is easy to verify that both pairs satisfy the equations. These pairs give us 3 as a possible value for
𝑥 + 𝑦.

A simple calculation shows that if a pair (𝑥, 𝑦) ∈ ℝ2 satisfy the equations, then the pair (4−𝑥, 4−𝑦)
is solution to the equations. From the pairs we have just found, we can therefore construct pairs of
solutions

(𝑥, 𝑦) =

(

5 −
√

5
2

,
5 +

√

5
2

)

and (𝑥, 𝑦) =

(

5 +
√

5
2

,
5 −

√

5
2

)

,

which give us 5 as a possible value for 𝑥 + 𝑦.

Solution 2. Let 𝑓 (𝑥) = 𝑥(3 − 𝑥)2. It is easy to check that if 𝑥 < 0 then 𝑓 (𝑥) < 𝑥. In particular
𝑓 (𝑓 (𝑥)) < 𝑓 (𝑥) < 𝑥 in this case, so that the pair (𝑥, 𝑓 (𝑥)) cannot be a solution. Similarly, 𝑓 (𝑥) > 𝑥 if
𝑥 > 4, so the pair (𝑥, 𝑓 (𝑥)) cannot be a solution in this case either.

Suppose that (𝑥, 𝑦) ∈ ℝ2 is a solution. According to the previous remark 𝑥 ∈ [0, 4], and similarly,
𝑦 ∈ [0, 4]. Hence we may write 𝑥 = 2 + 2𝑟 and 𝑦 = 2 + 2𝑠 with 𝑟, 𝑠 ∈ [−1, 1]. After substitution
and simplification, the equation 𝑥 = 𝑦(3 − 𝑦)2 transforms into the equation 𝑟 = 4𝑠3 − 3𝑠. Recall the
trigonometric identities for threefold angles. If 𝑠 = cos(𝛼) for some 𝛼 ∈ ℝ, then 𝑟 = 4 cos3(𝛼) −
3 cos(𝛼) = cos(3𝛼). In the same way 𝑠 = 4𝑟3 − 3𝑟 = cos(9𝛼).

We can deduce that 9𝛼 = 2𝜋𝑚 + 𝛼 or 9𝛼 = 2𝜋𝑙 − 𝛼 for some integers 𝑚 and 𝑙. In the former
case we have 8𝛼 = 2𝜋𝑚, so that 𝑚 ∈ {0, 1, 2, 3, 4}, and the corresponding possible pairs of solutions
can be found in Figure 1. In the former case we have 10𝛼 = 2𝜋𝑙, so that 𝑙 ∈ {0, 1, 2, 3, 4, 5}, where
𝑙 = 0 and 𝑙 = 5 result in angles that we have already considered in the first case. We consider the
other options in Figure 2 taking into account the well-known identities cos(𝜋∕5) = (1 +

√

5)∕4 and
cos(3𝜋∕5) = (1 −

√

5)∕4.
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𝑚 8𝛼 𝛼 𝑟 𝑠 𝑥 𝑦 𝑥 + 𝑦
0 0 0 1 1 4 4 8
1 2𝜋 𝜋∕4

√

2∕2 −
√

2∕2 2 +
√

2 2 −
√

2 4
2 4𝜋 𝜋∕2 0 0 2 2 4
3 6𝜋 3𝜋∕4 −

√

2∕2
√

2∕2 2 −
√

2 2 +
√

2 4
4 8𝜋 𝜋 −1 −1 0 0 0

Figure 1: Pairs of solutions and their sums
𝑙 10𝛼 𝛼 𝑟 𝑠 𝑥 𝑦 𝑥 + 𝑦

1 2𝜋 𝜋∕5 (1 +
√

5)∕4 (1 −
√

5)∕4 (5 +
√

5)∕2 (5 −
√

5)∕2 5
2 4𝜋 2𝜋∕5 (−1 +

√

5)∕4 (−1 −
√

5)∕4 (3 +
√

5)∕2 (3 −
√

5)∕2 3
3 6𝜋 3𝜋∕5 (1 −

√

5)∕4 (1 +
√

5)∕4 (5 −
√

5)∕2 (5 +
√

5)∕2 5
4 8𝜋 4𝜋∕5 (−1 −

√

5)∕4 (−1 +
√

5)∕4 (3 −
√

5)∕2 (3 +
√

5)∕2 3

Figure 2: Pairs of solutions and their sums

Problem 6. Let 𝑛 be a positive integer and 𝑡 be a non-zero real number. Let 𝑎1, 𝑎2,… , 𝑎2𝑛−1 be real
numbers (not necessarily distinct). Prove that there exist distinct indices 𝑖1, 𝑖2,… , 𝑖𝑛 such that, for all
1 ≤ 𝑘, 𝑙 ≤ 𝑛, we have 𝑎𝑖𝑘 − 𝑎𝑖𝑙 ≠ 𝑡.

Solution. Let 𝐺 = (𝑉 ,𝐸) be a graph with vertex set 𝑉 = {1, 2,… , 2𝑛 − 1} and edge set 𝐸 =
{{𝑖, 𝑗}∶ |𝑎𝑖 − 𝑎𝑗| = 𝑡}.

Note that𝐺 has no odd cycles. Indeed, if 𝑗1,… , 𝑗2𝑘+1 is a cycle, then for all 𝓁 = 1, 3, 5,… , 2𝑘−1 the
number 𝑎𝑗𝓁 differs from 𝑎𝑗𝓁+2 by 2𝑡 or 0. Hence 𝑎𝑗1 differs from 𝑎𝑗2𝑘+1 by an even multiple of 𝑡. Therefore
there is no edge between 𝑗1 and 𝑗2𝑘+1 contradicting the assumption that 𝑗1,… , 𝑗2𝑘+1 is a cycle.

Since 𝐺 has no odd cycles, it is bipartite. Therefore 𝑉 can be split into two disjoint sets 𝑉1, 𝑉2 such
that there is no edge between any two vertices of 𝑉1 and there are no edges between any two vertices
in 𝑉2. Since 𝑉 has 2𝑛 − 1 elements, one of the sets 𝑉1, 𝑉2 has at least 𝑛 elements. Without loss of
generality assume that 𝑉1 has at least 𝑛 elements. Then for 𝑘 = 1, 2,… , 𝑛 simply define 𝑖𝑘 to be the
𝑘-th least element of 𝑉1.

Problem 7. Let 𝑛 > 2 be an integer. Anna, Edda and Magni play a game on a hexagonal board tiled
with regular hexagons, with 𝑛 tiles on each side. The figure shows a board with 5 tiles on each side.
The central tile is marked.
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∗

The game begins with a stone on a tile in one corner of the board.
Edda and Magni are on the same team, playing against Anna, and they
win if the stone is on the central tile at the end of any player’s turn. Anna,
Edda and Magni take turns moving the stone: Anna begins, then Edda
and then Magni, and so on.

The rules for each player’s turn are:
• Anna has to move the stone to an adjacent tile, in any direction.
• Edda has to move the stone straight by two tiles in any of the 6

possible directions.
• Magni has a choice of passing his turn, or moving the stone straight

by three tiles in any of the 6 possible directions.
Find all 𝑛 for which Edda and Magni have a winning strategy.

Solution. We colour the board in three colours in such a way that no neighbouring tiles are of the
same colour. We can give each hexagon a coordinate using ⃖⃖⃗𝑒1 = (1, 0) and ⃖⃖⃗𝑒2 = (cos(120◦, sin(120◦)) =
(

−1
2
,
√

3
2

)

as basis. Let the central tile be the origin. Then each hexagon has center at 𝑎⋅ ⃖⃖⃗𝑒1+𝑏⋅ ⃖⃖⃗𝑒2, (𝑎, 𝑏) ∈
ℤ2. The tuple (𝑎, 𝑏) is the coordinate for a given hexagon its neighbours are (𝑎 + 1, 𝑏), (𝑎 + 1, 𝑏 + 1),
(𝑎, 𝑏 + 1), (𝑎 − 1, 𝑏), (𝑎 − 1, 𝑏 − 1) and (𝑎, 𝑏 − 1). We colour the hexagon with coordinates (𝑎, 𝑏) with
colour number (𝑎 + 𝑏) (mod 3). It is clear that neighbouring hexagons do not share a colour. (In fact
this is the only three colouring of a hexagonal tiling). See figure 3.

Figure 3: Three colouring of the hexagonal tiling for 5 hexagons on each side

We see that if 𝑛 ≡ 1 (mod 3), the stone begins in a tile in the same colour as the central tile, let that
colour be grey. By regarding a few cases, we see that whatever Anna does, Edda and Magni can end
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their turns by getting the stone to a prescribed grey tile of the closest grey tiles. Therefore they can get
the stone to the central tile.

If 𝑛 ≢ 1 (mod 3), the stone does not begin on the same grey colour as the central tile. Say the stone
begins on a white tile, and say the third colour is black. Anna can always move the stone to a grey
tile that is not on the same horizontal/diagonal line as the central tile. Then Anna moves the stone to a
white or black tile. After Magni moves the stone is still again on a white/black tile. Anna can continue
this indefinitely, with the stone never reaching the central tile.

Problem 8. We are given a collection of 22𝑘 coins, where 𝑘 is a non-negative integer. Exactly one
coin is fake. We have an unlimited number of service dogs. One dog is sick but we do not know which
one. A test consists of three steps: select some coins from the collection of all coins; choose a service
dog; the dog smells all of the selected coins at once. A healthy dog will bark if and only if the fake coin
is amongst them. Whether the sick dog will bark or not is random.

Devise a strategy to find the fake coin, using at most 2𝑘 + 𝑘 + 2 tests, and prove that it works.

Solution. Number the coins by 2𝑘-digit binary numbers from
length 2𝑘
⏞⏞⏞
00…0 to

length 2𝑘
⏞⏞⏞
11…1. Let 𝐴𝑖 be the set of

coins which have 0 in 𝑖-th position of the binary number. The first 2𝑘 tests we perform with the help
of 2𝑘 different dogs. In the 𝑖-th test we determine whether the set 𝐴𝑖 contains the fake coin. With out
loss of generality we may assume that the dogs determined that all the digits in the number of the fake
coin are 0’s. Due to the possible presence of the sick dog in these tests, it means in fact that the binary
number of the fake coin contains at most one 1.

In the next test we let a new dog determine whether the coin
length 2𝑘
⏞⏞⏞
00…0 is genuine. If the new dog

barks then the coin is really fake, for otherwise two dogs had given us a false answer. If the new dog
does not bark we find a dog we have not used before to test the suspected coin.

(i) If the last two dogs disagree one of them must be sick and hence the first 𝑘 dogs must be healthy.

In this case the coin
length 2𝑘
⏞⏞⏞
00…0 is the fake one.

(ii) If the last two dogs agree (by not barking) it follows that both of them are healthy. The reason is
that if one of the last two dogs was sick and did not bark, it would mean that the first 𝑘 dogs were

healthy, implying that the coin
length 2𝑘
⏞⏞⏞
00…0 is fake, but then the other of the last two dogs is healthy

and did not bark at the fake coin, a contradiction.
9
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Therefore one of the first 2𝑘 dogs gave a wrong verdict. In this case we have 2𝑘 possible candidates
for the fake coin. We can find the fake coin using the last dog and 𝑘 tests using binary search.

It follows that no more than 2𝑘 + 𝑘 + 2 tests are needed.

Problem 9. We are given 2021 points on a plane, no three of which are collinear. Among any 5 of
these points, at least 4 lie on the same circle. Is it necessarily true that at least 2020 of the points lie on
the same circle?

Solution. The answer is positive.
Let us first prove a lemma that if 4 points 𝐴,𝐵, 𝐶,𝐷 all lie on circle Γ and some two points 𝑋, 𝑌

do not lie on Γ, then these 6 points are pairs of intersections of three circles, circle Γ and two other
circles. Indeed, according to the problem statement there are 4 points among 𝐴,𝐵, 𝐶,𝑋, 𝑌 which are
concyclic. These 4 points must include points 𝑋 and 𝑌 because if one of them is not, then the other one
must lie on Γ. Without loss of generality, take 𝐴,𝐵,𝑋, 𝑌 to lie on the same circle. Similarly for points
𝐴,𝐶,𝐷,𝑋, 𝑌 there must be 4 points which are concyclic. Analogously, they must include points 𝑋
and 𝑌 . Point 𝐴 cannot be one of them because two circles cannot have more than two common points.
Therefore, points 𝐶,𝐷,𝑋, 𝑌 are concyclic which proves the lemma.

Let us first solve the problem for the case for which there exist 5 points which lie on one circle
Γ. Label these points 𝐴,𝐵, 𝐶,𝐷,𝐸. Let us assume that there exists two points which do not lie on
Γ, label them 𝑋 and 𝑌 . According to the previously proven lemma, points 𝐴,𝐵, 𝐶,𝐷,𝑋, 𝑌 must be
the pairwise intersections of 3 circles. Without loss of generality, let the intersections of Γ with one of
the other circles be 𝐴 and 𝐵 and with the other circle 𝐶 and 𝐷. Similarly, 𝐴,𝐵, 𝐶, 𝐸,𝑋, 𝑌 must be
the pairwise intersections of three circles one of which is Γ. This is not possible as none of the points
𝐴,𝐵, 𝐶 lies on the circumcircle of triangle 𝐸𝑋𝑌 . This contradiction shows that at most 1 point can lie
outside circle Γ, i.e. at least 2020 points lie on circle Γ.

It remains to look at the case for which no 5 points lie on the same circle. Let 𝐴,𝐵, 𝐶,𝐷,𝐸 be
arbitrary 5 points. Without loss of generality, let 𝐴,𝐵, 𝐶,𝐷 be concyclic and 𝐸 a point not on this
circle. According to the lemma, for every other point 𝐹 and points 𝐴,𝐵, 𝐶,𝐷,𝐸, the 6 points are the
intersections of circle Γ and some two other circles. But in total, there are 3 such points because one of
the two circles must go through 𝐸 and some 2 points out of 𝐴,𝐵, 𝐶,𝐷, while the other circle must go
through point 𝐸 and the other two points out of 𝐴,𝐵, 𝐶,𝐷. There are only three partitions of 𝐴,𝐵, 𝐶,𝐷
into two sets. There is a contradiction, as there are 2021 > 5 + 3 points in total.

Problem 10. John has a string of paper where 𝑛 real numbers 𝑎𝑖 ∈ [0, 1], for all 𝑖 ∈ {1,… , 𝑛}, are
written in a row. Show that for any given 𝑘 < 𝑛, he can cut the string of paper into 𝑘 non-empty pieces,
between adjacent numbers, in such a way that the sum of the numbers on each piece does not differ
from any other sum by more than 1.
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Solution 1. Denote the sums on each piece by
𝑆1 = 𝑎1 + 𝑎2 +…+ 𝑎𝑚1

,
𝑆2 = 𝑎𝑚1+1 + 𝑎𝑚1+2 +…+ 𝑎𝑚2

,
…

𝑆𝑘 = 𝑎𝑚𝑘−1+1 +…+ 𝑎𝑚𝑘
.

By abuse of notation 𝑆𝑖 will both denote the set of numbers enclosed by cuts and its sum, the meaning
of which must be determined by the context.

We will start the following algorithm. During this algorithm we will move some elements to the
neighbouring piece and construct new sequence of pieces 𝑆⋆ = (𝑆⋆

1 , 𝑆
⋆
2 ,… , 𝑆⋆

𝑘 ). Empty pieces may
appear, but we will consider that case in the end.
(1) Find 𝑝 ≤ 𝑘 such that 𝑆𝑝 is the piece with the maximum sum of elements.
(2) If 𝑆𝑝 ≤ min(𝑆1,… , 𝑆𝑘) + 1 we are done.
(3) If 𝑆𝑝 > min(𝑆1,… , 𝑆𝑘) + 1, let 𝑆𝑞 be the pieces with minimum sum of elements nearest to 𝑆𝑝 (ties

broken arbitrarily) and let 𝑆ℎ be the next pieces to 𝑆𝑞 between 𝑆𝑝 and 𝑆𝑞 (it is non empty by the
choice of 𝑆𝑞). Then either 𝑝 < 𝑞 and then ℎ = 𝑞 − 1 and we define 𝑆⋆ by moving the last element
from 𝑆ℎ = 𝑆𝑞−1 to 𝑆𝑞, or 𝑞 < 𝑝, and then ℎ = 𝑞 +1 and 𝑆⋆ is obtained by moving the first element
of 𝑆ℎ = 𝑆𝑞+1 to 𝑆𝑞. If 𝑝 = ℎ then set 𝑆 = 𝑆⋆ and go to step (1). If 𝑝 ≠ ℎ then set 𝑆 = 𝑆⋆ and
proceed to step (2).

Note that in step (3) each number 𝑆⋆
𝑖 is at most 𝑆𝑝 and no new piece with sum 𝑆𝑝 is created.

Indeed, 𝑆⋆
ℎ < 𝑆ℎ ≤ 𝑆𝑝, and for some 𝑗 we have 𝑆⋆

𝑞 = 𝑆𝑞 + 𝑎𝑗 < 𝑆𝑝 since 𝑎𝑗 ∈ [0, 1] and 𝑆𝑝 >
min(𝑆1,… , 𝑆𝑘) + 1. It is clear also that max(𝑆1,… , 𝑆𝑘) does not increase during the algorithm.

Note also that in step (3) the pieces 𝑆ℎ may become empty. Then, in the next iteration of the
algorithm, 𝑞 = ℎ will be chosen since min(𝑆1,… , 𝑆𝑘) = 𝑆ℎ = 0 and in step (3) 𝑆⋆

ℎ will become non
empty (but one of its neighbours may become empty, etc.).

Claim: In the algorithm above, Step (3) is repeated at most 𝑘𝑛 times with 𝑆𝑝 being the same max-
imal pieces in 𝑆⋆ and in 𝑆.

Proof. Let 𝑠𝑖 be the number of elements in 𝑖-th pieces. Then the number
𝑘
∑

𝑖=1
|𝑖 − 𝑝|𝑠𝑖

takes positive integral values and is always less than 𝑘𝑛. It is clear that this number decreases during
the algorithm.
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Thus after at most 𝑘𝑛 iteration of (3), the algorithm decreases the value of 𝑆𝑝 and so goes to (1).
Consequently it decreases either the number of pieces with maximal sums or max(𝑆1,… , 𝑆𝑘). As there
are only finitely many ways to split the sum onto pieces, the algorithm eventually terminates at (2).

When the algorithm teminates, we are left with a sequence 𝑆 = (𝑆1, 𝑆2,… , 𝑆𝑘) where the piece
𝑆𝑝 with maximum sum is such that 𝑆𝑝 ≤ min(𝑆1,… , 𝑆𝑘) + 1. If there is an empty piece 𝑆ℎ in the
sequence, then the sum of any piece is in [0, 1]. We can for any empty piece create a cut in any place
between numbers where there was not previously a cut, and discard the empty pieces. This is possible
since the cuts are 𝑘 ≤ 𝑛 − 1, and 𝑛 − 1 is the number of places in between numbers. This operation
will only possibly decrease the maximum sum, and still all sums will be in [0, 1], so all conditions are
satisfied.

Solution 2. This problem can be solved by finding a certain graph having a directed path of length
𝑘. For real 𝑥 let (𝑉𝑥, 𝐸𝑥) be a directed graph having vertices 𝑉𝑥 = {0, 1,… , 𝑛}. If 𝑖, 𝑗 ∈ 𝑉𝑥 we have a
directed edge (𝑖, 𝑗) ∈ 𝑉𝑥 iff 𝑖 ≤ 𝑗 and

𝑗
∑

𝑙=𝑖+1
∈ [𝑥, 𝑥 + 1].

Suppose that for some 𝑥 ∈ ℝ there exist such a graph (𝑉𝑥, 𝐸𝑥) such that there exist a path of length
𝑘 from vertex 0 to vertex 𝑛. Let 0 = 𝑣0, 𝑣1,… , 𝑣𝑘 = 𝑛 be an path of length 𝑘. If we cut the paper
string between numbers 𝑣𝑖 and 𝑣𝑖 + 1 for 𝑖 ∈ {1,… , 𝑘 − 1} we have that the sum of the 𝑖-th part is
𝑎𝑣𝑖−1+1 +… + 𝑎𝑣𝑖 ∈ [𝑥, 𝑥 + 1]. In particular the sum of the number of each piece does not differ from
the sum of any other piece by more than 1.

It is therefore evident that the statement of the problem is equivalent to the existence of a real 𝑥 such
that there exists a path of length 𝑘 form vertex 0 to vertex 𝑛 in graph (𝐸𝑥, 𝑉𝑥).For a real 𝑥 let 𝑠𝑥 be the least vertex in (𝑉𝑥, 𝐸𝑥) such that there exists a path of length 𝑘 from 0 to
𝑠𝑥 and let 𝑡𝑥 be the greatest, provided that such a path exists. It is not difficult to prove (by induction on
𝑘) that for each vertex 𝑣 ∈ 𝐸𝑥 such that 𝑠𝑥 ≤ 𝑣 ≤ 𝑡𝑥 there exists a path of length 𝑘 for 0 to 𝑣.

Start with 𝑥 = 0. As 𝑥 increases both 𝑠𝑥 and 𝑡𝑥 increase. As there are only finitely many different
sums formed by taking a subset of the 𝑎𝑖-s it follows that the graph (𝑉𝑥, 𝐸𝑥) changes at discrete values
of 𝑥. It is not hard to see that if the graph makes one change between reals 𝑥1 < 𝑥2 and 𝑠𝑥1 , 𝑠𝑥2 , 𝑡𝑥1 , 𝑡𝑥2exist then 𝑠𝑥1 ≤ 𝑠𝑥2 ≤ 𝑡𝑥1 ≤ 𝑡𝑥2 .

For 𝑠 =
𝑛
∑

𝑖=1
𝑎𝑖 + 1 it is clear that there (𝑉𝑠, 𝐸𝑠) has no edges. It is not hard to see that as 𝑥 increases

we will eventually find a value for 𝑥 such that (𝑉𝑥, 𝐸𝑥) has a path of length 𝑘 for 0 to 𝑛 as desired.

Problem 11. A point 𝑃 lies inside a triangle 𝐴𝐵𝐶 . The points 𝐾 and 𝐿 are the projections of 𝑃 onto
𝐴𝐵 and 𝐴𝐶 , respectively. The point 𝑀 lies on the line 𝐵𝐶 so that 𝐾𝑀 = 𝐿𝑀 , and the point 𝑃 ′ is
symmetric to 𝑃 with respect to 𝑀 . Prove that ∠𝐵𝐴𝑃 = ∠𝑃 ′𝐴𝐶 .
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𝐵𝑀

𝑃 ′

𝐴

𝐾
𝐾 ′

𝐿′

𝑀 ′
𝑃

𝐿

𝐶

Figure 4

Solution. For points 𝑋, 𝑌 ,𝑍, 𝑋 ≠ 𝑌 and 𝑍 ≠ 𝑌 let rot𝑋𝑌𝑍 denote the rotation that takes rotates
line 𝑋𝑌 to line 𝑍𝑌 modulo half turns. We consider two rotations equivalent one of them is a compo-
sition of some translation and the other rotation. It is clear that this is indeed an equivalence relation
(as the Euclidean plane is Desarguean).

Let 𝐾 ′ and 𝐿′ be the projections of 𝑃 ′ onto 𝐴𝐵 and 𝐴𝐶 respectively, as in figure 4. Let 𝓁 be the
perpendicular line to line 𝐴𝐵 passing through 𝑀 . From symmetries it follows that 𝐿′ is the refection
of 𝐿 over 𝓁. In particular segments 𝑀𝐿 and 𝑀𝐿′ are congruent. Similarly segments 𝑀𝐾 and 𝑀𝐾 ′

are congruent. It follows that 𝑀 is a center of circle passing through 𝐿, 𝐾 , 𝐿′ and 𝐾 ′.
As line 𝑃𝐿 is perpendicular to line 𝐴𝐶 and line 𝑃𝐾 is perpendicular to line 𝐴𝐵 it follows that

quadrilateral 𝐴𝐾𝑃𝐿 is cyclic. Similarly quadrilateral 𝐴𝐾 ′𝑃𝐿′ is also cyclic.
From the theorem on inscribed angles in cyclic quadrilaterals it follows that

rot 𝐵𝐴𝑃 ≡ rot𝐾𝐴𝑃 ≡ rot𝐾𝐿𝑃 ,
rot 𝑃 ′𝐴𝐶 ≡ rot 𝑃 ′𝐴𝐿 ≡ rot 𝑃 ′𝐾 ′𝐿 and

rot𝐾𝐿𝐿′ ≡ rot𝐾𝐾 ′𝐿′

As ∠𝑃𝐿𝐿′ and ∠𝐾𝐾 ′𝑃 ′ are right it follows that rot 𝑃𝐿𝐿′ ≡ rot𝐾𝐾 ′𝑃 ′ modulo half turns. Now
rot𝐾𝐿𝐿′ ≡ rot𝐾𝐿𝑃 + rot 𝑃𝐿𝐿′ and rot𝐾𝐾 ′𝐿′ ≡ rot 𝑃 ′𝐾 ′𝐿 + rot𝐾𝐾 ′𝑃
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and rot𝐾𝐿𝐿′ ≡ rot𝐾𝐾 ′𝐿′ so we decuce that rot𝐾𝐿𝑃 ≡ rot 𝑃 ′𝐾 ′𝐿.
Putting everything together gives

rot 𝐵𝐴𝑃 ≡ rot 𝑃 ′𝐴𝐿′

which gives the desired result.

Remark. This method can be applied to prove the existence of isogonal conjugates in triangles.

Problem 12. Let 𝐼 be the incentre of a triangle 𝐴𝐵𝐶 . Let 𝐹 and 𝐺 be the projections of 𝐴 onto the
lines 𝐵𝐼 and 𝐶𝐼 , respectively. Rays 𝐴𝐹 and 𝐴𝐺 intersect the circumcircles of the triangles 𝐶𝐹𝐼 and
𝐵𝐺𝐼 for the second time at points 𝐾 and 𝐿, respectively. Prove that the line 𝐴𝐼 bisects the segment
𝐾𝐿.

Solution. Since ∠𝐼𝐹𝐾 = 90◦, then 𝐼𝐾 is the diameter of the circumcircle of 𝐶𝐹𝐼 , hence also
∠𝐼𝐶𝐾 = 90◦. Similarly is 𝐼𝐿 the diameter of the circumcircle of 𝐵𝐺𝐼 and ∠𝐼𝐵𝐿 = 90◦. Therefore
are the lines 𝐶𝐾 and 𝐺𝐿 parallel, also 𝐵𝐿 and 𝐹𝐾 are parallel.

Let the lines 𝐶𝐾 and 𝐵𝐿 intersect at 𝐷, as seen in figure 5. From the above we get that 𝐷𝐾𝐴𝐿 is
a parallelogram. Note that 𝐷 is the excenter with respect to the vertex 𝐴 of the triangle 𝐴𝐵𝐶 , since the
lines 𝐵𝐿 and 𝐶𝐾 are perpendicular to the corresponding internal angle bisectors. The excenter lies on
the internal angle bisector 𝐴𝐼 , hence 𝐴𝐼 bisects the diagonal 𝐾𝐿.

𝐴

𝐵
𝐿

𝐷

𝐶
𝐾

𝐼

𝐺

𝐹

Figure 5
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Problem 13. Let 𝐷 be the foot of the 𝐴-altitude of an acute triangle 𝐴𝐵𝐶 . The internal bisector of
the angle 𝐷𝐴𝐶 intersects 𝐵𝐶 at 𝐾 . Let 𝐿 be the projection of 𝐾 onto 𝐴𝐶 . Let 𝑀 be the intersection
point of 𝐵𝐿 and 𝐴𝐷. Let 𝑃 be the intersection point of 𝑀𝐶 and 𝐷𝐿. Prove that 𝑃𝐾 ⟂ 𝐴𝐵.

Solution 1. Let 𝑋 be a point on 𝐵𝐶 such that 𝐿𝑋 ⟂ 𝐴𝐵, as seen in figure 6. It is enough to prove
that

𝐷𝑃
𝑃𝐿

= 𝐷𝐾
𝐾𝑋

because then 𝑃𝐾 ∥ 𝐿𝑋 and 𝐿𝑋 ⟂ 𝐴𝐵.
Applying Menelaos for triangle 𝐵𝐷𝐿 and transversal 𝑀𝑃𝐶 we get

𝐷𝑃
𝑃𝐿

⋅
𝐿𝑀
𝑀𝐵

⋅
𝐵𝐶
𝐶𝐷

= 1,

and Menelaus for triangle 𝐵𝐿𝐶 and transversal 𝐴𝑀𝐷 gives
𝐵𝑀
𝑀𝐿

⋅
𝐿𝐴
𝐴𝐶

⋅
𝐶𝐷
𝐷𝐵

= 1.

Multiplying these two equalities yields
𝐷𝑃 ⋅ 𝐵𝐶 ⋅ 𝐴𝐿
𝑃𝐿 ⋅ 𝐵𝐷 ⋅ 𝐴𝐶

= 1.

Note, however, that 𝐴𝐿 = 𝐴𝐷 = 𝐴𝐶 sin 𝛾 , 𝐵𝐷 = 𝐴𝐵 cos 𝛽, and, by the sine rule, 𝐴𝐵
𝐵𝐶

= sin 𝛾
sin 𝛼

, where
𝛼 = ∠𝐵𝐴𝐶, 𝛽 = ∠𝐶𝐵𝐴 and 𝛾 = ∠𝐴𝐶𝐵. Therefore

𝐷𝑃
𝑃𝐿

= 𝐵𝐷 ⋅ 𝐴𝐶
𝐵𝐶 ⋅ 𝐴𝐿

=
𝐴𝐵 cos 𝛽 ⋅ 𝐴𝐶
𝐵𝐶 ⋅ 𝐴𝐶 sin 𝛾

=
sin 𝛾 cos 𝛽
sin 𝛼 sin 𝛾

=
cos 𝛽
sin 𝛼

.

On the other hand, since 𝐷𝐾 = 𝐾𝐿, ∠𝐾𝐿𝑋 = 𝜋 − 𝛼, and ∠𝐿𝑋𝐾 = 𝜋
2
− 𝛽, we have by the sine rule

𝐷𝐾
𝐾𝑋

= 𝐿𝐾
𝐾𝑋

=
sin(𝜋

2
− 𝛽)

sin(𝜋 − 𝛼)
=

cos 𝛽
sin 𝛼

.

Therefore
𝐷𝑃
𝑃𝐿

=
cos 𝛽
sin 𝛼

= 𝐷𝐾
𝐾𝑋

which finishes the proof.
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𝐴

𝑃

𝐵 𝐶 𝑋𝐷 𝐾

𝑀

𝐿

Figure 6

Solution 2. Let 𝜔 be the circle with center 𝐾 an radius 𝐾𝐷, as in figure 7. Then 𝜔 is tangent to 𝐴𝐷
and 𝐴𝐿. Let 𝐵𝐶 intersect 𝜔 at 𝐷 and 𝑄. Let 𝐵𝑀 intersect 𝜔 at 𝐿 and 𝑅. Let 𝑄𝑃 intersect 𝐵𝐿 at 𝑆.

Cross-ratio chasing gives, through the projections 𝐵𝐿 → 𝐷-pencil → 𝜔 → 𝐿-pencil → 𝐵𝐶 → 𝑃 -
pencil → 𝐵𝐿,

(𝐿,𝑅;𝑀,𝐵) = (𝐷𝐿,𝐷𝑅;𝐷𝑀,𝐷𝐵) = (𝐿,𝑅;𝐷,𝑄) = (𝐿𝐶,𝐿𝐵;𝐿𝐷,𝐿𝑄)
= (𝐶,𝐵;𝐷,𝑄) = (𝑃𝐶, 𝑃𝐵;𝑃𝐷, 𝑃𝑄) = (𝑀,𝐵;𝐿,𝑆) = (𝐿,𝑆;𝑀,𝐵),

therefore 𝑅 = 𝑆.
It is clear now that 𝑃 lies on the polar lines of both 𝐴 and 𝐵 with respect to 𝜔, therefore 𝐴𝐵 is the

polar line of 𝑃 . This implies that 𝑃𝐾 ⟂ 𝐴𝐵.

Problem 14. Let 𝐴𝐵𝐶 be a triangle with circumcircle Γ and circumcentre 𝑂. Denote by 𝑀 the
midpoint of 𝐵𝐶 . The point 𝐷 is the reflection of 𝐴 over 𝐵𝐶 , and the point 𝐸 is the intersection of Γ
and the ray 𝑀𝐷. Let 𝑆 be the circumcentre of the triangle 𝐴𝐷𝐸. Prove that the points 𝐴, 𝐸, 𝑀 , 𝑂,
and 𝑆 lie on the same circle.

Solution. First we prove that 𝐴, 𝑀 , 𝐸, 𝑆 are concyclic. Note that 𝐵𝐶 is the perpendicular bisector
of 𝐴𝐷, so 𝑆 lies on 𝐵𝐶 . Let 𝑋 be the intersection of 𝐴𝐷 and 𝐵𝐶 as in figure 8. Then, using directed
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𝐴

𝑃

𝐵 𝐶𝑄𝐷 𝐾

𝑀

𝐿

𝑅 = 𝑆

Figure 7
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angles,
∠𝐸𝑀𝑆 = ∠𝐷𝑀𝑋

= 90◦ − ∠𝑋𝐷𝑀
= 90◦ − ∠𝐴𝐷𝐸
= ∠𝑆𝐸𝐴
= ∠𝐸𝐴𝑆,

so 𝐴𝑀𝐸𝑆 is cyclic as claimed.
Now we prove that 𝐴, 𝑀 , 𝐸, 𝑂 are concyclic. Let 𝐹 be the reflection of 𝐷 over 𝑀 . Then 𝐹 lies

on the same side of 𝐵𝐶 as 𝐴 and satisfies 𝐹𝐶𝐵 ≅ 𝐷𝐵𝐶 ≅ 𝐴𝐵𝐶 , so 𝐹 must be the point such that
𝐴𝐹𝐶𝐵 is an isosceles trapezoid. In particular, 𝐹 lies on Γ. Consequently,

∠𝑂𝐴𝐸 = 90◦ − ∠𝐸𝐹𝐴 = 90◦ − ∠𝐸𝑀𝐵 = ∠𝑂𝑀𝐵 + ∠𝐵𝑀𝐸 = ∠𝑂𝑀𝐸,

so 𝐴𝑀𝐸𝑂 is also cyclic as claimed.
Thus 𝐴, 𝐸, 𝑀 , 𝑂, 𝑆 are concyclic, as desired.

𝐴

𝐵𝑆 𝐶

𝐷

𝐸

𝑀

𝐹

𝑋
𝑂

Figure 8
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Problem 15. For which positive integers 𝑛 ≥ 4 does there exist a convex 𝑛-gon with side lengths
1, 2,… , 𝑛 (in some order) and with all of its sides tangent to the same circle?

Solution. It exists if 𝑛 = 4𝑘 or 𝑛 = 4𝑘 + 1 where 𝑘 is a positive integer.
Let us consider 𝑛-gon 𝑃1𝑃2 …𝑃𝑛. Tangent points of the inscribed circle divide each of its sides in

two segments. Lengths of these segments that has a common vertex 𝑃𝑖 are equal. Denote the length
of tangent segments that originate at point 𝑃𝑖 by 𝐴𝑖. It means that side lengths of the 𝑛-gon can be
expressed as 𝑃𝑖𝑃𝑖+1 = 𝐴𝑖 + 𝐴𝑖+1 for all 𝑖 = 1, 2,… , 𝑛 where we consider points cyclically (𝑃𝑛+1 = 𝑃1and 𝐴𝑛+1 = 𝐴1).We can show that the converse is true as well. That is, if we can find 𝑛 positive real numbers 𝐴𝑖,
𝑖 = 1, 2,… , 𝑛 such that the sequence (𝐴1 + 𝐴2, 𝐴2 + 𝐴3,… , 𝐴𝑛 + 𝐴1) is a permutation of (1, 2,… , 𝑛)
then there is a circumscribed polygon 𝑃1𝑃2 …𝑃𝑛 with side lengths 1, 2,… , 𝑛.

To show this we start with a circle of arbitrary radius 𝑅 and construct points 𝑃1, 𝑃2,… , 𝑃𝑛 outside
this circle so that the length of the tangent segments from 𝑃𝑖 to the circle are of length 𝐴𝑖 and the "right"
tangent segment from 𝑃𝑖 touches the circle at the same point as the "left" tangent segment from 𝑃𝑖−1.Now we almost have the 𝑛-gon except that possibly the "right" tangent point of 𝑃1 does not match
the "left" touching point of 𝑃𝑛. This can be easily fixed by adjusting the radius 𝑅 of the circle, using
continuity.

Now we solve the problem by considering 4 cases:
(i) First let’s consider the case when 𝑛 = 4𝑘. In this case such circumscribed 𝑛-gon exists. The 4𝑘

segments 𝐴𝑖 can be of lengths

𝐴1 =
1
2
, 𝐴2 =

1
2
, 𝐴3 =

3
2
, 𝐴4 =

3
2
,… , 𝐴2𝑘−1 =

2𝑘 − 1
2

, 𝐴2𝑘 =
2𝑘 − 1

2
,

𝐴2𝑘+1 =
2𝑘 + 1

2
, 𝐴2𝑘+2 =

6𝑘 − 1
2

, 𝐴2𝑘+3 =
2𝑘 − 1

2
, 𝐴2𝑘+4 =

6𝑘 − 3
2

,… ,

𝐴4𝑘−1 =
3
2
, 𝐴4𝑘 =

4𝑘 + 1
2

.

One can see that the values of the sums of the consecutive elements 𝐴1+𝐴2, 𝐴2+𝐴3,… , 𝐴4𝑘−1+
𝐴4𝑘, 𝐴4𝑘 + 𝐴4𝑘+1 are exactly 1, 2,… , 2𝑘, 4𝑘, 4𝑘 − 1,… , 2𝑘 + 1, respectively.

(ii) In the case 𝑛 = 4𝑘 + 1 the construction is similar, we can choose 4𝑘 + 1 segments of length
𝐴1 =

1
2
, 𝐴2 =

1
2
, 𝐴3 =

5
2
, 𝐴4 =

5
2
,… ,

𝐴2𝑘+1 =
4𝑘 + 1

2
, 𝐴2𝑘+2 =

4𝑘 + 1
2

, 𝐴2𝑘+3 =
4𝑘 − 1

2
,

𝐴2𝑘+4 =
4𝑘 − 3

2
, 𝐴2𝑘+5 =

4𝑘 − 5
2

, … , 𝐴4𝑘+1 =
3
2
.
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In this case the values of the sums of consecutive elements 𝐴1 + 𝐴2, 𝐴2 + 𝐴3, . . . , 𝐴4𝑘−1 + 𝐴4𝑘,
𝐴4𝑘 + 𝐴4𝑘+1 are 1, 3, 5,… , 4𝑘 + 1, 4𝑘, 4𝑘 − 2,… , 2, respectively.

(iii) In case when 𝑛 = 4𝑘 + 2 such a polygon does not exist. To prove this we note that in case if the
number of the sides of the circumscribed polygon is even then the sum of the odd numbered sides
is equal to the sum of the even numbered sides. It is evident as two segments of equal length that
originate from the same vertex contribute to different sums. But the total sum of the side lengths
is an odd number what means that it is impossible to split the sides on two parts with equal sum
of lengths.

(iv) In case 𝑛 = 4𝑘 + 3 such a polygon also does not exist. In this case we can express 𝐴1 as
𝐴1 = (𝐴1 + 𝐴2 +…+ 𝐴𝑛) − (𝐴2 + 𝐴3) − (𝐴4 + 𝐴5) −… − (𝐴4𝑘+2 + 𝐴4𝑘+3) =

=
𝑃1𝑃2 + 𝑃2𝑃3 +⋯ + 𝑃4𝑘+3𝑃1

2
− 𝑃2𝑃3 − 𝑃4𝑃5 −…− 𝑃4𝑘+2𝑃4𝑘+3

As the sum of the length of the sides is an even number then we conclude that 𝐴1 is a positive
integer. The same is true for all 𝐴2, 𝐴3,… as well. But now we have a contradiction as the side
of length 1 cannot be split in two parts, each of which has positive integer length.

Problem 16. Show that no non-zero integers 𝑎, 𝑏, 𝑥, 𝑦 satisfy
{

𝑎𝑥 − 𝑏𝑦 = 16,
𝑎𝑦 + 𝑏𝑥 = 1.

Solution. If we use the Diophantus sum of squares equality
(𝑎𝑥 − 𝑏𝑦)2 + (𝑎𝑦 + 𝑏𝑥)2 = (𝑎2 + 𝑏2)(𝑥2 + 𝑦2)

then we can see that for a system
{

𝑎𝑥 − 𝑏𝑦 = 𝑠
𝑎𝑦 + 𝑏𝑥 = 𝑡

to have a solution in positive integers the number 𝑠2 + 𝑡2 must be a composite number.
The number corresponding to the equation, 162 + 12 = 257, is a prime number. This shows that

no solution can exist in non-zero integers, as it would give a factorisation of the prime with each factor
> 1.
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Remark. Note that (𝑎 + 𝑏𝑖)(𝑥 + 𝑦𝑖) = (𝑎𝑥 − 𝑏𝑦) + (𝑎𝑦 + 𝑏𝑥)𝑖. Finding a solution to the system
of equations is therefore equivalent to finding a factorization of 𝑠 + 𝑡𝑖 in Gaussian integers ℤ[𝑖] with
non-negative real and imaginary component. It is known that the Gaussian integers form a Euclidean
domain and hence a unique factorization domain. The form for primes in ℤ[𝑖] has been thoroughly
studied.

Problem 17. Distinct positive integers 𝑎, 𝑏, 𝑐, 𝑑 satisfy
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎 ∣ 𝑏2 + 𝑐2 + 𝑑2,
𝑏 ∣ 𝑎2 + 𝑐2 + 𝑑2,
𝑐 ∣ 𝑎2 + 𝑏2 + 𝑑2,
𝑑 ∣ 𝑎2 + 𝑏2 + 𝑐2,

and none of them is larger than the product of the three others. What is the largest possible number of
primes among them?

Solution. At first we note that the given condition is equivalent to 𝑎, 𝑏, 𝑐, 𝑑|𝑎2 + 𝑏2 + 𝑐2 + 𝑑2.
It is possible that three of the given numbers are primes, for example for 𝑎 = 2, 𝑏 = 3, 𝑐 = 13

and 𝑑 = 26. In this case 22 + 32 + 132 + 262 = 13 ⋅ 66 which is divisible by all four given numbers.
Furthermore we will show that it is impossible that all four of them are primes.

Let us assume that 𝑎, 𝑏, 𝑐 and 𝑑 are primes. As the sum 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 is divisible by each of
them then it is divisible also by their product 𝑎𝑏𝑐𝑑. If one of the primes is equal to 2, then we obtain
a contradiction: the sum of four squares is odd, but its divisor 𝑎𝑏𝑐𝑑 is even. Therefore all four primes
are odd, and 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 = 0 (mod 4). Hence 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 is divisible by 4𝑎𝑏𝑐𝑑 which leads
to a contradiction as it is easy to see that 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 < 4𝑎𝑏𝑐𝑑. Indeed, this is equivalent to

𝑎
𝑏𝑐𝑑

+ 𝑏
𝑎𝑐𝑑

+ 𝑐
𝑎𝑏𝑑

+ 𝑑
𝑎𝑏𝑐

< 4

which is true as none of the numbers exceed the product of three three other and equality can hold only
for the largest of the four.

Problem 18. Find all integer triples (𝑎, 𝑏, 𝑐) satisfying the equation
5𝑎2 + 9𝑏2 = 13𝑐2.
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Solution. Observe that (𝑎, 𝑏, 𝑐) = (0, 0, 0) is a solution. Assume that the equation has a solution
(𝑎0, 𝑏0, 𝑐0) ≠ (0, 0, 0). Let 𝑑 = gcd(𝑎0, 𝑏0, 𝑐0) > 0. Let (𝑎, 𝑏, 𝑐) = (𝑎0∕𝑑, 𝑏0∕𝑑, 𝑐0∕𝑑). Then gcd(𝑎, 𝑏, 𝑐)
= 1. From 5𝑎02 + 9𝑏0

2 = 13𝑐02 it follows that:

5𝑎2 + 9𝑏2 = 5
(𝑎0
𝑑

)2
+ 9

(

𝑏0
𝑑

)2

=
5𝑎02 + 9𝑏0

2

𝑑2
=

13𝑐02

𝑑2
= 13

(𝑐0
𝑑

)2
= 13𝑐2

hence (𝑎, 𝑏, 𝑐) is also a solution.
As (𝑎0, 𝑏0, 𝑐0) ≠ (0, 0, 0) it follows that (𝑎, 𝑏, 𝑐) ≠ (0, 0, 0). Consider the equation modulo 5. It

follows that 4𝑏2 ≡ 5𝑎2 + 9𝑏2 = 13𝑐2 ≡ 3𝑐2 (mod 5), that is 4𝑏2 ≡ 3𝑐2 (mod 5). Multiplying by 4
gives:

𝑏2 ≡ 16𝑏2 = 4 ⋅ 4𝑏2 ≡ 4 ⋅ 3𝑐2 = 12𝑐2 ≡ 2 ⋅ 𝑐2 (mod 5)

If 5|𝑐 then 2𝑐2 ≡ 2 ⋅ 02 = 0 (mod 5) and therefore 𝑎2 ≡ 0 (mod 5), that is 5|𝑏2. As 5 is prime it
follows that 5|𝑏. Hence 5 divides 𝑏 and 𝑐. It follows that 52|13𝑐2 − 9𝑏2 = 5𝑎2. Consequently 5 divides
𝑎2. As 5 is prime, 5|𝑎. This means that 5 divides 𝑎, 𝑏 and 𝑐 contradicting the fact that gcd(𝑎, 𝑏, 𝑐) = 1.
We conclude that 5|𝑐 does not hold.

As 5|𝑐 does not hold and 5 is a prime it follows that 𝑐 and 5 are relative prime. Therefore there
exists 𝑥 ∈ ℤ such that 𝑐 ⋅ 𝑥 ≡ 1 (mod 5). Multiplying by 𝑥2 gives:

(𝑏 ⋅ 𝑥)2 = 𝑏2 ⋅ 𝑥2 ≡ 2 ⋅ 𝑐2 ⋅ 𝑥2 = 2 ⋅ (𝑐 ⋅ 𝑥)2 ≡ 2 ⋅ 12 = 2 (mod 5)

That is 𝑦2 ≡ 2 (mod 5) where 𝑦 = 𝑏 ⋅ 𝑥. As 𝑦2 ≡ 2 (mod 5) it follows that 𝑦 and 5 are relative prime.
By Fermat’s little theorem it follows that 𝑦4 ≡ 1 (mod 5). Hence:

1 ≡ 𝑦4 = (𝑦2)2 ≡ 22 = 4 (mod 5)

but 1 ≢ 4 (mod 5) so we have a contradiction. We conclude that the equation 5𝑎2 + 9𝑏2 = 13𝑐2 has no
solution besides the solution (𝑎, 𝑏, 𝑐) = (0, 0, 0).

Problem 19. Find all polynomials 𝑝 with integer coefficients such that the number 𝑝(𝑎) − 𝑝(𝑏) is
divisible by 𝑎 + 𝑏 for all integers 𝑎, 𝑏, provided that 𝑎 + 𝑏 ≠ 0.

Solution. The polynomials we are looking for are those whose every odd-degree term has zero coef-
ficient.

Let 𝑃 (𝑥) = 𝑃0(𝑥) + 𝑃1(𝑥), where 𝑃0 and 𝑃1 are polynomials whose all non-zero terms have either
even or odd degree, respectively.

Then we can write 𝑃0(𝑥) = 𝑄(𝑥2), where polynomial 𝑄 is obtained from polynomial 𝑃0 by dividing
degrees of all non-zero terms by 2. Now, for any integers 𝑎, 𝑏 the number 𝑃0(𝑎)−𝑃0(𝑏) = 𝑄(𝑎2)−𝑄(𝑏2)
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is divisible by 𝑎2−𝑏2, and hence also by 𝑎+𝑏. Thus, if every odd-degree term of 𝑃 has zero coefficient,
then the condition of the problem is satisfied.

On the other hand, if polynomial 𝑃 satisfies the condition of the problem, then also 𝑃 − 𝑃0 = 𝑃1must satisfy it. Note that for every real 𝑥, 𝑃1(−𝑥) = −𝑃1(𝑥), i.e. 𝑃1 is an odd function. By substituting
𝑏 by −𝑏 in the condition of the problem we obtain that 𝑎−𝑏|𝑃1(𝑎)+𝑃1(𝑏) holds for any distinct integers
𝑎 and 𝑏. Since also 𝑎 − 𝑏|𝑃1(𝑎) − 𝑃1(𝑏), then for any integers 𝑎, 𝑏 we have 𝑎 − 𝑏|2𝑃1(𝑎). But for any
𝑎 there exists such 𝑏 that |𝑎 − 𝑏| > 2𝑃1(𝑎). From this we conclude that 𝑃1(𝑎) = 0 for any integer 𝑎.
Altogether we have 𝑃 = 𝑃0, i.e. coefficients of all odd-degree terms are zero.

Problem 20. Let 𝑛 ≥ 2 be an integer. Given numbers 𝑎1, 𝑎2,… , 𝑎𝑛 ∈ {1, 2, 3,… , 2𝑛} such that
lcm(𝑎𝑖, 𝑎𝑗) > 2𝑛 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, prove that

𝑎1𝑎2⋯ 𝑎𝑛 ∣ (𝑛 + 1)(𝑛 + 2)⋯ (2𝑛 − 1)(2𝑛).

Solution. For every 𝑖 = 1, 2,… , 𝑛 let 𝑏𝑖 = max{𝑘 ⋅ 𝑎𝑖|𝑘 ∈ ℤ, 𝑘 ⋅ 𝑎𝑖 ≤ 2𝑛}, that is 𝑏𝑖 is the greatest
multiple of 𝑎𝑖 in {1, 2,… , 2𝑛}. It is clear that 𝑏𝑖 ∈ {𝑛+1, 𝑛+2,… , 2𝑛} because if 𝑏𝑖 ≤ 𝑛 then 2𝑏𝑖 ≤ 2𝑛
is a greater multiple of 𝑎𝑖.If 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 then 𝑎𝑖 ∤ 𝑏𝑗 because else 𝑏𝑗 ≤ 2𝑛 would be a common multiple of 𝑎𝑖 and
𝑎𝑗 smaller than their least common multiple lcm(𝑎𝑖, 𝑎𝑗) > 2𝑛. In particular 𝑏𝑖 ≠ 𝑏𝑗 . It follows that
the map {1, 2,… , 𝑛} → {𝑛 + 1, 𝑛 + 2,… , 2𝑛}, 𝑖 ↦ 𝑏𝑖 is injective. As both sets {1, 2,… , 𝑛} and
{𝑛 + 1, 𝑛 + 2,… , 2𝑛} have the same finite cardinality it follows that the map is also a surjection and
hence a bijection. In particular 𝑏1𝑏2 ⋯ 𝑏𝑛 = (𝑛 + 1)(𝑛 + 2)⋯ (2𝑛) by associativity and commutativity.

As each 𝑎𝑖|𝑏𝑖 it follows that
𝑎1𝑎2 ⋯ 𝑎𝑛|𝑏1𝑏2 ⋯ 𝑏𝑛 = (𝑛 + 1)(𝑛 + 2)⋯ (2𝑛)

as desired.
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