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1. Answer: No, the sequence must contain two equal terms.

It is clear that there exists a smallest positive integer k such that

10k > (k + 1) · 92005.

We shall show that there exists a positive integer N such that an consists of less than k + 1
decimal digits, ∀n ≥ N . Let ai be a positive integer which consists of exactly j + 1 digits,
that is,

10j ≤ ai < 10j+1.

We need to prove two statements:

• ai+1 has less than k + 1 digits if j < k, and

• ai > ai+1 if j ≥ k.

To prove the first statement, notice that

ai+1 ≤ (j + 1) · 92005 < (k + 1) · 92005 < 10k (j < k)

and hence ai+1 consists of less than k + 1 digits. To prove the second statement, notice that
ai consists of j + 1 digits, none of which exceeds 9. Hence ai+1 ≤ (j + 1) · 92005 and because
j ≥ k, we get

ai ≥ 10j > (j + 1) · 92005 ≥ ai+1 (j ≥ k),

which proves the second statement. It is now easy to derive the result from this statement.
Assume that a0 consists of k + 1 or more digits (otherwise we are done, because then it
follows inductively that all terms of the sequence consist of less than k + 1 digits, by the first
statement). It is obviously possible to construct a strictly decreasing sequence a0 > a1 >
· · · > aN of positive integers such that aN has less than k + 1 digits (where N is the first
index having this property). By an easy induction, it follows that none of the numbers in
{aN , aN+1, . . .} consists of more than k digits. This set contains infinitely many numbers
but none of these numbers exceeds 10k. By the Pigeonhole Principle, two elements of this set
must be equal, and we are done.

2. Since tan2 x = 1/ cos2 x − 1, the inequality to be proved is equivalent to

1

cos2 α
+

1

cos2 β
+

1

cos2 γ
≥ 27

8
.

The inequality between arithmetic and harmonic means implies

3
1

cos2 α + 1
cos2 β + 1

cos2 γ

≤ cos2 α + cos2 β + cos2 γ

3

=
3 − (sin2 α + sin2 β + sin2 γ)

3

≤ 1 −
(

sinα + sin β + sin γ

3

)2

=
8

9

and the result follows.
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3. Note that
1

akak+2
<

2

akak+1
− 2

ak+1ak+2
,

because this inequality is equivalent to the inequality

ak+2 > ak +
1

2
ak+1 ,

which is evident for the given sequence. Now we have

1

a1a3
+

1

a2a4
+

1

a3a5
+ · · · + 1

a98a100
<

2

a1a2
− 2

a2a3
+

2

a2a3
− 2

a3a4
+ · · · <

2

a1a2
= 4 .

4. Answer: For example, P (x) = x, P (x) = x2 + 1 and P (x) = x4 + 2x2 + 2.

For all reals x we have P (x)2 + 1 = P (x2 + 1) = P (−x)2 + 1 and consequently, (P (x) +
P (−x))(P (x) − P (−x)) = 0. Now one of the three cases holds:

(a) P (x)+P (−x) 6≡ 0 and P (x)−P (−x) 6≡ 0. Then (P (x)+P (−x)) as well as (P (x)−P (−x))
are both non-constant polynomials and have a finite numbers of roots only, i.e. this case
cannot hold.

(b) P (x) + P (−x) ≡ 0. Obviously, P (0) = 0. Consider the infinite sequence of integers
a0 = 0 and an+1 = a2

n + 1. By induction it is easy to see that P (an) = an for all non-
negative integers n. Also, Q(x) = x has that property, i.e. P (x) − Q(x) is a polynomial
with infinitely many roots, i.e. P (x) ≡ x.

(c) P (x) − P (−x) ≡ 0. Then

P (x) = x2n + bn−1x
2n−2 + . . . + b1x

2 + b0,

for some integer n since P (x) is even and it is easy to see that the coefficient of x2n must
be 1. n = 1 and n = 2 yield the solutions P (x) = x2 + 1 and P (x) = x4 + 2x2 + 2.

Remark: For n = 3 there is no solution, whereas for n = 4 there is the unique solution
P (x) = x8 + 6x6 + 8x4 + 8x2 + 5.

Alternative solution: Let Q(x) = x2 + 1. Then the equation that P must satisfy can
be written P (Q(x)) = Q(P (x)), and it is clear that this will be satisfied for P (x) = x,
P (x) = Q(x) and P (x) = Q(Q(x)).

5. For any positive real x we have x2 + 1 ≥ 2x. Hence

a

a2 + 2
+

b

b2 + 2
+

c

c2 + 2
≤

a

2a + 1
+

b

2b + 1
+

c

2c + 1
=

1

2 + 1/a
+

1

2 + 1/b
+

1

2 + 1/c
= R.

R ≤ 1 is equivalent to

(

2 +
1

b

)(

2 +
1

c

)

+

(

2 +
1

a

) (

2 +
1

c

)

+

(

2 +
1

a

)(

2 +
1

b

)

≤
(

2 +
1

a

)(

2 +
1

b

) (

2 +
1

c

)

and to 4 ≤ 1
ab + 1

ac + 1
bc + 1

abc . By abc = 1 and by the AM-GM inequality

1

ab
+

1

ac
+

1

bc
≥ 3

3

√

(

1

abc

)2

= 3

the last inequality follows. Equality appears exactly when a = b = c = 1.
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6. Let N = q ·K + r, 0 ≤ r < K, and let us number the cards 1, 2, . . . , N , starting from the one
at the bottom of the deck. First we find out how the cards 1, 2, . . . ,K are moving in the deck.

If i ≤ r then the card i is moving along the cycle

i,K + i, 2K + i, . . . , qK + i, (r + 1 − i),K + (r + 1 − i), . . . , qK + (r + 1 − i),

because N − K < qK + i ≤ N and N − K < qK + (r + 1 − i) ≤ N . The length of this cycle
is 2q + 2. In a special case of i = r + i− 1, it actually consists of two smaller cycles of length
q + 1.

If r < i ≤ K then the card i is moving along the cycle

i,K + i, 2K + i, . . . , (q − 1)K + i, (K + r + 1 − i),

K + (K + r + 1 − i), 2K + (K + r + 1 − i), . . . , (q − 1)K + (K + r + 1 − i),

because N − K < (q − 1)K + i ≤ N and N − K < (q − 1)K + (K + r + 1 − i) ≤ N . The
length of this cycle is 2q. In a special case of i = K + r + 1 − i, it actually consists of two
smaller cycles of length q.

Since these cycles cover all the numbers 1, . . . , N , we can say that every card returns to its
initial position after either 2q+2 or 2q operations. Therefore, all the cards are simultaneously
at their initial position after no later than LCM(2q + 2, 2q) = 2LCM(q + 1, q) = 2q(q + 1)
operations. Finally,

2q(q + 1) ≤ (2q)2 = 4q2 ≤ 4

(

N

K

)2

,

which concludes the proof.

7. Clearly there must be rows with some zeroes. Consider the case when there is a row with
just one zero; we can assume it is (0, 1, 1, 1, 1, 1). Then for each row (1, x2, x3, x4, x5, x6) there
is also a row (0, x2, x3, x4, x5, x6); the conclusion follows. Consider the case when there is a
row with just two zeros; we can assume it is (0, 0, 1, 1, 1, 1). Let nij be the number of rows
with first two elements i, j. As in the first case n00 ≥ n11. Let n01 ≥ n10; the other subcase
is analogous. Now there are n00 + n01 zeros in the first column and n10 + n11 ones in the
first column; the conclusion follows. Consider now the case when each row contains at least 3
zeros (except (1, 1, 1, 1, 1, 1), if such a row exists). Let’s prove it is impossible that each such
row contains exactly 3 zeroes. Assume the opposite. As n > 2 there are at least 2 rows with
zeros; they are different, so their product contains at least 4 zeros, a contradiction. So there
are more then 3(n − 1) zeros in the array; so in some column there are more than (n − 1)/2
zeros; so there are at least n/2 zeros.

8. Answer: 48 squares.

Consider a diagonal of the square grid. For any grid vertex A on this diagonal denote by C
the farthest endpoint of this diagonal. Let the square with the diagonal AC be red. Thus,
we have defined the set of 48 red squares (24 for each diagonal). It is clear that if we draw
all these squares, all the lines in the grid will turn red.

In order to show that 48 is the minimum, consider all grid segments of length 1 that have
exactly one endpoint on the border of the grid. Every horizontal and every vertical line that
cuts the grid into two parts determines two such segments. So we have 4 · 24 = 96 segments.
It is evident that every red square can contain at most 2 of these segments.

9. Let us denote the number of ways to split some figure onto dominos by a small picture of this
figure with a sign #. For example, # = 2.

Let Nn =# (n rows); γn =# (n− 2 full rows and 1 row with 2 cells). We are going

to find a recurrent relation for the numbers Nn.
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Observe that

# = # + # + # = 2# + # ,

# = # + # = # + # .

We can generalize our observations by writing the equalities

Nn = 2γn + Nn−2 ,

2γn−2 = Nn−2 − Nn−4 ,

2γn = 2γn−2 + 2Nn−2 .

If we sum up these equalities we obtain the desired recurrence

Nn = 4Nn−2 − Nn−4 .

It is easy to find that N2 = 3, N4 = 11. Now by the recurrence relation it is trivial to check
that N6k+2 ≡ 0 (mod 3).

10. Answer: n = 11.

Taking the 10 divisors without prime 13 shows n ≥ 11. Consider the following partition of
the 15 divisors into 5 groups of 3 each with the property that the product of the numbers in
every group equals m.

{2 · 3, 5 · 13, 7 · 11},
{2 · 5, 3 · 7, 11 · 13},
{2 · 7, 3 · 13, 5 · 11},
{2 · 11, 3 · 5, 7 · 13},
{2 · 13, 3 · 11, 5 · 7}

If n = 11, then there is a group from which we take all three numbers, i.e. their product
equals m.

11. Assume that the circumcircles of triangles ADC and BEC meet at C and P . The problem is
to show that the line KL makes equal angles with the lines AC and BC. Since the line joining
the circumcenters of triangles ADC and BEC is perpendicular to the line CP , it suffices to
show that CP is the angle-bisector of ∠ACB.

A B

C

D

E

K

L

P
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Since the points A, P , D, C are concyclic, we obtain ∠EAP = ∠BDP . Analogously, we have
∠AEP = ∠DBP . These two equalities together with AE = BD imply that triangles APE
and DPB are congruent. This means that the distance from P to AC is equal to the distance
from P to BC, and thus CP is the angle-bisector of ∠ACB, as desired.

12.

A B

C
D

M

N

P

Q

A′

B′

C′

D′

X

Y

Let A′, B′, C ′, D′ be the feet of the perpendiculars from A, B, C, D, respectively, onto the
line MN . Then

AA′ = BB′ and CC ′ = DD′ .

Denote by X, Y the feet of the perpendiculars from C, D onto the lines BB ′, AA′, respectively.
We infer from the above equalities that AY = BX. Since also BC = AD, the right-angled
triangles BXC and AY D are congruent. This shows that

∠C ′CQ = ∠B′BQ = ∠A′AP = ∠D′DP .

Therefore, since CC ′ = DD′, the triangles CC ′Q and DD′P are congruent. Thus CQ = DP .

13. Answer: (a) 6 circles, (b) 5 circles.

(a) Consider the four corners and the two midpoints of the sides of length 6. The distance
between any two of these six points is 3 or more, so one circle cannot cover two of these points,
and at least 6 circles are needed.

On the other hand one circle will cover a 2×2 square, and it is easy to see that 6 such squares
can cover the rectangle.

(b) Consider the four corners and the center of the rectangle. The minimum distance between
any two of these points is the distance between the center and one of the corners, which is√

34/2. This is greater than the diameter of the circle (
√

34/4 >
√

32/4), so one circle cannot
cover two of these points, and at least 5 circles are needed.

5/3

2

1

5/2

Partition the rectangle into 3 rectangles of size 5/3 × 2 and two rectangles of size 5/2 × 1 as
shown above. It is easy to check that each has a diagonal of length less than 2

√
2, so five

circles can cover the five small rectangles and hence the 5 × 3 rectangle.
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14. Answer: ∠PMQ = 90◦.

Draw the parallelogram ABCA′, with AA′ ‖ BC. Then M lies on BA′, and BM =
1

3
BA′. So

M is on the homothetic image (center B, dilation 1/3) of the circle with center C and radius
AB, which meets BC at D and E. The image meets BC at P and Q. So ∠PMQ = 90◦.

15. Let A1 be the intersection of a with BD, B1 the intersection of b with AC, C1 the intersection
of c with BD and D1 the intersection of d with AC. It follows easily by the given right angles
that the following three sets each are concyclic:

• A, A1, D, D1, O lie on a circle w1 with diameter AD.

• B, B1, C, C1, O lie on a circle w2 with diameter BC.

• C, C1, D, D1 lie on a circle w3 with diameter DC.

We see that O lies on the radical axis of w1 and w2. Also, Y lies on the radical axis of w1

and w3, and on the radical axis of w2 and w3, so Y is the radical center of w1, w2 and w3, so
it lies on the radical axis of w1 and w2. Analogously we prove that X lies on the radical axis
of w1 and w2.

16. It is sufficient to show the statement for q prime. We need to prove that

(n + 1)p ≡ np (mod q) ⇒ q ≡ 1 (mod p).

It is obvious that (n, q) = (n+1, q) = 1 (as n and n+1 cannot be divisible by q simultaneously).
Hence there exists a positive integer m such that mn ≡ 1 (mod q). In fact, m is just the
multiplicative inverse of n (mod q). Take s = m(n + 1). It is easy to see that

sp ≡ 1 (mod q).

Let t be the smallest positive integer which satisfies st ≡ 1 (mod q) (t is the order of s (mod
q)). One can easily prove that t divides p. Indeed, write p = at + b where 0 ≤ b < t. Then

1 ≡ sp ≡ sat+b ≡
(

st
)a · sb ≡ sb (mod q).

By the definition of t, we must have b = 0. Hence t divides p. This means that t = 1 or t = p.
However, t = 1 is easily seen to give a contradiction since then we would have

m(n + 1) ≡ 1 (mod q) or n + 1 ≡ n (mod q).

Therefore t = p, and p is the order of s (mod q). By Fermat’s little theorem,

sq−1 ≡ 1 (mod q).

Since p is the order of s (mod q), we have that p divides q − 1, and we are done.

17. Answer: a = (2m−1)2+1
2 where m is an arbitrary positive integer.

Let yn = 2xn − 1. Then yn = 2(2xn−1xn−2 − xn−1 − xn−2 + 1) − 1 = 4xn−1xn−2 − 2xn−1 −
2xn−2 +1 = (2xn−1−1)(2xn−2−1) = yn−1yn−2 when n > 1. Notice that yn+3 = yn+2yn+1 =
y2
n+1yn. We see that yn+3 is a perfect square iff yn is a perfect square. Hence y3n is a perfect

square for all n ≥ 1 exactly when y0 is a perfect square. Since y0 = 2a − 1, the result is

obtained when a = (2m−1)2+1
2 for all positive integers m.

18. Let x = 2sx1 and y = 2ty1 where x1 and y1 are odd integers, contrary to assumption. Without
loss of generality we can assume that s ≥ t. We have

z =
2s+t+2

2t(2s−tx1 + y1)
=

2s+2x1y1

2s−tx1 + y1
.
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If s 6= t, then the denominator is odd and therefore z is even. So we have s = t and
z = 2s+2x1y1/(x1+y1). Let x1 = dx2, y1 = dy2 with (x2, y2) = 1. So z = 2s+2dx2y2/(x2+y2).
As z is odd, it must be that x2 +y2 is divisible by 2s+2 ≥ 4, so x2 +y2 is divisible by 4. As x2

and y2 are odd integers, one of them, say x2 is congruent to 3 modulo 4. But (x2, x2 +y2) = 1,
so x2 is a divisor of z.

19. Answer: Yes, it is possible.

Start with a simple Pythagorian identity:

32 + 42 = 52.

Multiply it with 52

32 · 52 + 42 · 52 = 52 · 52

and insert the identity for the first

32 · (32 + 42) + 42 · 52 = 52 · 52

which gives
32 · 32 + 32 · 42 + 42 · 52 = 52 · 52.

Multiply again with 52

32 · 32 · 52 + 32 · 42 · 52 + 42 · 52 · 52 = 52 · 52 · 52

and split the first

32 · 32 · (32 + 42) + 32 · 42 · 52 + 42 · 52 · 52 = 52 · 52 · 52

that is
32 · 32 · 32 + 32 · 32 · 42 + 32 · 42 · 52 + 42 · 52 · 52 = 52 · 52 · 52.

This (multiplying with 52 and splitting the first term) can be repeated as often as needed,
each time increasing the number of terms by one. Clearly, each term is a square number and
the terms are strictly increasing from left to right.

20. Answer: All numbers 2r3s where r and s are non-negative integers and s ≤ r ≤ 2s.

Let m = (p1 +1)(p2 +1) · · · (pk+1). Can assume that pk is the largest prime factor. If pk > 3
then pk cannot divide m, because if pk divides m it is a prime factor of pi + 1 for some i, but
if pi = 2 then pi+1 < pk, and otherwise pi+1 is an even number with factors 2 and 1

2 (pi+1)
which are both strictly smaller than pk. Thus the only primes that can divide n are 2 and
3, so we can write n = 2r3s. Then m = 3r4s = 22s3r which is divisible by n if and only if
s ≤ r ≤ 2s.
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