
The Viking Battle - Part 1 2024 - Solutions

Problem 1 Let m and n be positive integers greater than 1. In each unit square
of an m × n grid lies a coin with its tail-side up. A move consists of the following
three steps:

1) select a 2× 2 square S in the grid;

2) flip the coins in the top-left and bottom-right unit square of S;

3) flip the coin in either the top-right or bottom-left unit square of S.

Determine all pairs (m,n) for which it is possible that every coin shows head-side
up after a finite number of moves.

Solution to problem 1

Answer: All (m,n) where 3 | mn.

First we show that if 3 | nm, then it is possible. It is easy to see that any m × n
grid where 3 | mn can be divided into 2× 3, 3× 2 and 3× 3 rectangles. In a 2× 3,
a 3× 2 and a 3× 3 rectangle it is possible that every coin shows head-side up after
a finite number of moves:
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This shows the first part of the claim.

Now we prove that if 3 - mn, then it is not possible. Let (i, j) be the unit square
in the ith row from the top, and the jth column from left. Label every (i, j) unit
square the residue modulo 3 of i + j − 2:
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Let T (0), T (1) and T (2) be the number of 0, 1 and 2, respectively, in the grid with
a coin that shows head-side up. At the beginning, we have T (0) = T (1) = T (2) = 0.
Notice that in each move, each of T (0), T (1) and T (2) is changed with ±1, hence
the parity of the pairwise differences of T (0), T (1) and T (2) is invariant.

If all coins in the grid show head-side up, then

• if m ≡ n ≡ 1 (mod 3), then T (0)− 1 = T (1) = T (2) = mn−1
3

;

• if nm ≡ 2 (mod 3), then T (0)− 1 = T (1)− 1 = T (2) = mn−2
3

;

• if m ≡ n ≡ 2 (mod 3), then T (0) = T (1)− 1 = T (2) = mn−1
3

.

Hence in all scenarios where 3 - mn, the parity of at least one of the pairwise
differences of T (0), T (1) and T (2) would have to change in order to end with all
coins head up, which is not possible.
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Problem 2 Let ABC be a triangle with AC > BC. Let ω be the circumcircle of
triangle ABC and let r be the radius of ω. The point P lies on the segment AC such
that BC = CP and the point S is the foot of the perpendicular from P to the line
AB. Let the ray BP intersect ω again at D and let Q lie on the line SP such that
PQ = r and S, P and Q lie on the line in this order. Finally, let the line through A
perpendicular to CQ intersect the line through B perpendicular to DQ at E.

Prove that E lies on ω.

Solution to problem 2 First observe that since CP = CB and ABCD cyclic then

∠DPA = ∠BPC = ∠CBP = ∠CBD = ∠CAD = ∠PAD,

and hence DP = DA. Thus there is a symmetry in the problem statement swapping
(A,D)↔ (B,C).
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Let O be the center of ω and let E ′ be the reflection of P in CD which by

∠CE ′D = ∠DPC = 180◦ − ∠CPB = 180◦ − ∠PBC = 180◦ − ∠DBC

lies on ω. By construction we have DE ′ = DP = DA. We claim that E = E ′: By
the symmetry noted above, it suffices to prove that BE ′ ⊥ DQ and then AE ′ ⊥ CQ
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will follow by symmetry. We have OA = PQ, AD = DP and

∠DAO = 90◦ − 1

2
∠AOD = 90◦ − ∠ABD = ∠BPS = ∠DPQ.

Hence 4AOD ' 4PQD. Thus

∠QDB + ∠DBE ′ = ∠ODA + ∠DAE ′ = ∠ODA + ∠AE ′D

= (90◦ − 1

2
∠AOD) + ∠AE ′D = (90◦ − ∠AE ′D) + ∠AE ′D = 90◦

giving BE ′ ⊥ DG as required.
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Problem 3 Let a1 < a2 < a3 < · · · be positive integers such that ak+1 divides
2(a1 + a2 + · · · + ak) for every k ≥ 1. Suppose that for infinitely many primes p,
there exists k such that p divides ak.

Prove that for every positive integer n, there exists k such that n divides ak.

Solution to problem 3

For every k ≥ 2 define the quotient bk = 2(a1 + a2 + · · · + ak−1)/ak. Since ak+1

divides 2(a1 + a2 + · · ·+ ak) for every k ≥ 1, bk is a positive integer.
First we prove that bk+1 ≤ bk + 1 for all k ≥ 2. By subtracting bkak = 2(a1 +

a2 + · · ·+ ak−1) from bk+1ak+1 = 2(a1 + a2 + · · ·+ ak) we find that

bk+1ak+1 = bkak + 2ak = (bk + 2)ak.

Since ak+1 > ak, we get bk+1 ≤ bk + 1 for all k ≥ 2.
Then we prove that the sequence (bn) is unbounded. From bk+1ak+1 = (bk +2)ak,

we know that ak+1 | (bk + 2)ak. Since this is true for all k ≥ 2, recursively we get

ak+1 | ak(bk + 2) | ak−1(bk−1 + 2)(bk + 2) | · · · | a2
k∏

i=2

(bi + 2).

If the sequence (bn) was bounded by B, then ak+1 would never be divisible by a
prime p greater than max(a2, B), which is not possible. Hence (bn) is unbounded.

Since (bn) is unbounded and bk+1 ≤ bk + 1 for all k ≥ 2, then for all n > b2 there
exists a k such that bk = n− 1 and bk+1 = n. Now

ak+1 = ak ·
bk + 2

bk+1

= ak ·
n + 1

n
.

Because n and n + 1 are coprime, this implies that ak is divisible by n. If n ≤ b2,
then chose an integer m such that nm > b2. We know there exists a k such that nm
divides ak, and hence such that n divides ak.
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