
NORDIC MATHEMATICAL CONTEST

PROBLEMS AND SOLUTIONS, 1987–2011

PROBLEMS

The problems are identified as xy.n., whery x and y are the last digits of the competition
year and n is the n:th problem of that year.

NMC 1, March 30, 1987

87.1. Nine journalists from different countries attend a press conference. None of these
speaks more than three languages, and each pair of the journalists share a common lan-
guage. Show that there are at least five journalists sharing a common language.
87.2. Let ABCD be a parallelogram in the plane. We draw two circles of radius R, one
through the points A and B, the other through B and C. Let E be the other point of
intersection of the circles. We assume that E is not a vertex of the parallelogram. Show
that the circle passing through A, D, and E also has radius R.
87.3. Let f be a strictly increasing function defined in the set of natural numbers satisfying
the conditions f(2) = a > 2 and f(mn) = f(m)f(n) for all natural numbers m and n.
Determine the smallest possible value of a.

87.4. Let a, b, and c be positive real numbers. Prove:

a

b
+

b

c
+

c

a
≤ a2

b2
+

b2

c2
+

c2

a2
.

NMC 2, April 4, 1988

88.1. The positive integer n has the following property: if the three last digits of n are
removed, the number 3

√
n remains. Find n.

88.2. Let a, b, and c be non-zero real numbers and let a ≥ b ≥ c. Prove the inequality

a3 − c3

3
≥ abc

(
a − b

c
+

b − c

a

)
.

When does equality hold?
88.3. Two concentric spheres have radii r and R, r < R. We try to select points A, B
and C on the surface of the larger sphere such that all sides of the triangle ABC would be
tangent to the surface of the smaller sphere. Show that the points can be selected if and
only if R ≤ 2r.
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88.4. Let mn be the smallest value of the function

fn(x) =
2n∑

k=0

xk.

Show that mn → 1
2
, as n → ∞.

NMC 3, April 10, 1989

89.1. Find a polynomial P of lowest possible degree such that
(a) P has integer coefficients,
(b) all roots of P are integers,
(c) P (0) = −1,
(d) P (3) = 128.
89.2. Three sides of a tetrahedron are right-angled triangles having the right angle at
their common vertex. The areas of these sides are A, B, and C. Find the total surface
area of the tetrahedron.
89.3. Let S be the set of all points t in the closed interval [−1, 1] such that for the
sequence x0, x1, x2, . . . defined by the equations x0 = t, xn+1 = 2x2

n − 1, there exists a
positive integer N such that xn = 1 for all n ≥ N . Show that the set S has infinitely many
elements.
89.4. For which positive integers n is the following statement true: if a1, a2, . . . , an are
positive integers, ak ≤ n for all k and

∑n
k=1 ak = 2n, then it is always possible to choose

ai1 , ai2 , . . . , aij
in such a way that the indices i1, i2, . . . , ij are different numbers, and∑j

k=1 aik
= n?

NMC 4, April 5, 1990

90.1. Let m, n, and p be odd positive integers. Prove that the number

(n−1)p∑
k=1

km

is divisible by n.
90.2. Let a1, a2, . . . , an be real numbers. Prove

3

√
a3
1 + a3

2 + . . . + a3
n ≤

√
a2
1 + a2

2 + . . . + a2
n. (1)

When does equality hold in (1)?
90.3. Let ABC be a triangle and let P be an interior point of ABC. We assume that
a line l, which passes through P , but not through A, intersects AB and AC (or their
extensions over B or C) at Q and R, respectively. Find l such that the perimeter of the
triangle AQR is as small as possible.
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90.4. It is possible to perform three operations f , g, and h for positive integers: f(n) =
10n, g(n) = 10n + 4, and h(2n) = n; in other words, one may write 0 or 4 in the end of
the number and one may divide an even number by 2. Prove: every positive integer can
be constructed starting from 4 and performing a finite number of the operations f , g, and
h in some order.

NMC 5, April 10, 1991

91.1. Determine the last two digits of the number

25 + 252
+ 253

+ · · ·+ 251991
,

written in decimal notation.
91.2. In the trapezium ABCD the sides AB and CD are parallel, and E is a fixed point
on the side AB. Determine the point F on the side CD so that the area of the intersection
of the triangles ABF and CDE is as large as possible.
91.3. Show that

1
22

+
1
32

+ . . . +
1
n2

<
2
3

for all n ≥ 2.
91.4. Let f(x) be a polynomial with integer coefficients. We assume that there exists a
positive integer k and k consecutive integers n, n + 1, . . . , n + k − 1 so that none of the
numbers f(n), f(n + 1), . . . , f(n + k − 1) is divisible by k. Show that the zeroes of f(x)
are not integers.

NMC 6, April 8, 1992

92.1. Determine all real numbers x > 1, y > 1, and z > 1, satisfying the equation

x + y + z +
3

x − 1
+

3
y − 1

+
3

z − 1

= 2
(√

x + 2 +
√

y + 2 +
√

z + 2
)

.

92.2. Let n > 1 be an integer and let a1, a2, . . . , an be n different integers. Show that
the polynomial

f(x) = (x − a1)(x − a2) · . . . · (x − an) − 1

is not divisible by any polynomial with integer coefficients and of degree greater than zero
but less than n and such that the highest power of x has coefficient 1.
92.3. Prove that among all triangles with inradius 1, the equilateral one has the smallest
perimeter .
92.4. Peter has many squares of equal side. Some of the squares are black, some are white.
Peter wants to assemble a big square, with side equal to n sides of the small squares, so
that the big square has no rectangle formed by the small squares such that all the squares
in the vertices of the rectangle are of equal colour. How big a square is Peter able to
assemble?
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NMC 7, March 17, 1993

93.1. Let F be an increasing real function defined for all x, 0 ≤ x ≤ 1, satisfying the
conditions

(i) F
(x

3

)
=

F (x)
2

,

(ii) F (1 − x) = 1 − F (x).

Determine F

(
173
1993

)
and F

(
1
13

)
.

93.2. A hexagon is inscribed in a circle of radius r. Two of the sides of the hexagon have
length 1, two have length 2 and two have length 3. Show that r satisfies the equation

2r3 − 7r − 3 = 0.

93.3. Find all solutions of the system of equations⎧⎪⎨
⎪⎩

s(x) + s(y) = x

x + y + s(z) = z

s(x) + s(y) + s(z) = y − 4,

where x, y, and z are positive integers, and s(x), s(y), and s(z) are the numbers of digits
in the decimal representations of x, y, and z, respectively.
93.4. Denote by T (n) the sum of the digits of the decimal representation of a positive
integer n.
a) Find an integer N , for which T (k · N) is even for all k, 1 ≤ k ≤ 1992, but T (1993 · N)
is odd.
b) Show that no positive integer N exists such that T (k ·N) is even for all positive integers
k.

NMC 8, March 17, 1994

94.1. Let O be an interior point in the equilateral triangle ABC, of side length a. The
lines AO, BO, and CO intersect the sides of the triangle in the points A1, B1, and C1.
Show that

|OA1| + |OB1| + |OC1| < a.

94.2. We call a finite plane set S consisting of points with integer coefficients a two-
neighbour set , if for each point (p, q) of S exactly two of the points (p + 1, q), (p, q + 1),
(p − 1, q), (p, q − 1) belong to S. For which integers n there exists a two-neighbour set
which contains exactly n points?
94.3. A piece of paper is the square ABCD. We fold it by placing the vertex D on the
point D′ of the side BC. We assume that AD moves on the segment A′D′ and that A′D′

intersects AB at E. Prove that the perimeter of the triangle EBD′ is one half of the
perimeter of the square.
94.4. Determine all positive integers n < 200, such that n2 + (n + 1)2 is the square of an
integer.
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NMC 9, March 15, 1995

95.1. Let AB be a diameter of a circle with centre O.
We choose a point C on the circumference of the circle
such that OC and AB are perpendicular to each other.
Let P be an arbitrary point on the (smaller) arc BC
and let the lines CP and AB meet at Q. We choose R
on AP so that RQ and AB are perpendicular to each
other. Show that |BQ| = |QR|.
95.2. Messages are coded using sequences consisting of zeroes and ones only. Only se-
quences with at most two consecutive ones or zeroes are allowed. (For instance the sequence
011001 is allowed, but 011101 is not.) Determine the number of sequences consisting of
exactly 12 numbers.
95.3. Let n ≥ 2 and let x1, x2, . . . xn be real numbers satisfying x1 + x2 + . . . + xn ≥ 0
and x2

1 + x2
2 + . . . + x2

n = 1. Let M = max{x1, x2, . . . , xn}. Show that

M ≥ 1√
n(n − 1)

. (1)

When does equality hold in (1)?
95.4. Show that there exist infinitely many mutually non-congruent triangles T , satisfying
(i) The side lengths of T are consecutive integers.
(ii) The area of T is an integer.

NMC 10, April 11, 1996

96.1. Show that there exists an integer divisible by 1996 such that the sum of the its
decimal digits is 1996.
96.2. Determine all real numbers x, such that

xn + x−n

is an integer for all integers n.
96.3. The circle whose diameter is the altitude dropped from the vertex A of the triangle
ABC intersects the sides AB and AC at D and E, respectively (A �= D, A �= E). Show
that the circumcentre of ABC lies on the altitude dropped from the vertex A of the triangle
ADE, or on its extension.
96.4. The real-valued function f is defined for positive integers, and the positive integer
a satisfies

f(a) = f(1995), f(a + 1) = f(1996), f(a + 2) = f(1997)

f(n + a) =
f(n) − 1
f(n) + 1

for all positive integers n.

(i) Show that f(n + 4a) = f(n) for all positive integers n.
(ii) Determine the smallest possible a.
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NMC 11, April 9, 1997

97.1. Let A be a set of seven positive numbers. Determine the maximal number of triples
(x, y, z) of elements of A satisfying x < y and x + y = z.
97.2. Let ABCD be a convex quadrilateral. We assume that there exists a point P
inside the quadrilateral such that the areas of the triangles ABP , BCP , CDP , and DAP
are equal. Show that at least one of the diagonals of the quadrilateral bisects the other
diagonal.
97.3. Let A, B, C, and D be four different points in the plane. Three of the line segments
AB, AC, AD, BC, BD, and CD have length a. The other three have length b, where

b > a. Determine all possible values of the quotient
b

a
.

97.4. Let f be a function defined in the set {0, 1, 2, . . . } of non-negative integers, satis-
fying f(2x) = 2f(x), f(4x + 1) = 4f(x) + 3, and f(4x− 1) = 2f(2x− 1)− 1. Show that f
is an injection, i.e. if f(x) = f(y), then x = y.

NMC 12, April 2, 1998

98.1. Determine all functions f defined in the set of rational numbers and taking their
values in the same set such that the equation f(x + y) + f(x − y) = 2f(x) + 2f(y) holds
for all rational numbers x and y.
98.2. Let C1 and C2 be two circles intersecting at A and B. Let S and T be the centres
of C1 and C2, respectively. Let P be a point on the segment AB such that |AP | �= |BP |
and P �= A, P �= B. We draw a line perpendicular to SP through P and denote by C and
D the points at which this line intersects C1. We likewise draw a line perpendicular to TP
through P and denote by E and F the points at which this line intersects C2. Show that
C, D, E, and F are the vertices of a rectangle.
98.3. (a) For which positive numbers n does there exist a sequence x1, x2, . . . , xn, which
contains each of the numbers 1, 2, . . . , n exactly once and for which x1 + x2 + · · ·+ xk is
divisible by k for each k = 1, 2, . . . , n?
(b) Does there exist an infinite sequence x1, x2, x3, . . ., which contains every positive
integer exactly once and such that x1 + x2 + · · · + xk is divisible by k for every positive
integer k?
98.4. Let n be a positive integer. Count the number of numbers k ∈ {0, 1, 2, . . . , n} such

that
(

n

k

)
is odd. Show that this number is a power of two, i.e. of the form 2p for some

nonnegative integer p.

NMC 13, April 15, 1999

99.1. The function f is defined for non-negative integers and satisfies the condition

f(n) =
{

f(f(n + 11)), if n ≤ 1999
n − 5, if n > 1999.

Find all solutions of the equation f(n) = 1999.
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99.2. Consider 7-gons inscribed in a circle such that all sides of the 7-gon are of different
length. Determine the maximal number of 120◦ angles in this kind of a 7-gon.
99.3. The infinite integer plane Z × Z = Z

2 consists of all number pairs (x, y), where x
and y are integers. Let a and b be non-negative integers. We call any move from a point
(x, y) to any of the points (x± a, y ± b) or (x± b, y ± a) a (a, b)-knight move. Determine
all numbers a and b, for which it is possible to reach all points of the integer plane from
an arbitrary starting point using only (a, b)-knight moves.
99.4. Let a1, a2, . . . , an be positive real numbers and n ≥ 1. Show that

n

(
1
a1

+ · · ·+ 1
an

)

≥
(

1
1 + a1

+ · · ·+ 1
1 + an

)(
n +

1
a1

+ · · · + 1
an

)
.

When does equality hold?

NMC 14, March 30, 2000

00.1. In how many ways can the number 2000 be written as a sum of three positive, not
necessarily different integers? (Sums like 1 + 2 + 3 and 3 + 1 + 2 etc. are the same.)
00.2. The persons P1, P1, . . . , Pn−1, Pn sit around a table, in this order, and each one of
them has a number of coins. In the start, P1 has one coin more than P2, P2 has one coin
more than P3, etc., up to Pn−1 who has one coin more than Pn. Now P1 gives one coin
to P2, who in turn gives two coins to P3 etc., up to Pn who gives n coins to P1. Now the
process continues in the same way: P1 gives n + 1 coins to P2, P2 gives n + 2 coins to P3;
in this way the transactions go on until someone has not enough coins, i.e. a person no
more can give away one coin more than he just received. At the moment when the process
comes to an end in this manner, it turns out that there are two neighbours at the table
such that one of them has exactly five times as many coins as the other. Determine the
number of persons and the number of coins circulating around the table.
00.3. In the triangle ABC, the bisector of angle B meets AC at D and the bisector of
angle C meets AB at E. The bisectors meet each other at O. Furthermore, OD = OE.
Prove that either ABC is isosceles or ∠BAC = 60◦.
00.4. The real-valued function f is defined for 0 ≤ x ≤ 1, f(0) = 0, f(1) = 1, and

1
2
≤ f(z) − f(y)

f(y) − f(x)
≤ 2

for all 0 ≤ x < y < z ≤ 1 with z − y = y − x. Prove that

1
7
≤ f

(
1
3

)
≤ 4

7
.
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NMC 15, March 29, 2001

01.1. Let A be a finite collection of squares in the coordinate plane such that the vertices
of all squares that belong to A are (m, n), (m + 1, n), (m, n + 1), and (m + 1, n + 1) for
some integers m and n. Show that there exists a subcollection B of A such that B contains
at least 25 % of the squares in A, but no two of the squares in B have a common vertex.
01.2. Let f be a bounded real function defined for all real numbers and satisfying for all
real numbers x the condition

f

(
x +

1
3

)
+ f

(
x +

1
2

)
= f(x) + f

(
x +

5
6

)
.

Show that f is periodic. (A function f is bounded, if there exists a number L such that
|f(x)| < L for all real numbers x. A function f is periodic, if there exists a positive number
k such that f(x + k) = f(x) for all real numbers x.)
01.3. Determine the number of real roots of the equation

x8 − x7 + 2x6 − 2x5 + 3x4 − 3x3 + 4x2 − 4x +
5
2

= 0.

01.4. Let ABCDEF be a convex hexagon, in which each of the diagonals AD, BE, and
CF divides the hexagon into two quadrilaterals of equal area. Show that AD, BE, and
CF are concurrent.

NMC 16, April 4, 2002

02.1. The trapezium ABCD, where AB and CD are parallel and AD < CD, is inscribed
in the circle c. Let DP be a chord of the circle, parallel to AC. Assume that the tangent
to c at D meets the line AB at E and that PB and DC meet at Q. Show that EQ = AC.
02.2. In two bowls there are in total N balls, numbered from 1 to N . One ball is moved
from one of the bowls into the other. The average of the numbers in the bowls is increased
in both of the bowls by the same amount, x. Determine the largest possible value of x.
02.3. Let a1, a2, . . . , an, and b1, b2, . . . , bn be real numbers, and let a1, a2, . . . , an be all
different. Show that if all the products

(ai + b1)(ai + b2) · · · (ai + bn),

i = 1, 2, . . . , n, are equal, then the products

(a1 + bj)(a2 + bj) · · · (an + bj),

j = 1, 2, . . . , n, are equal, too.

02.4. Eva, Per and Anna play with their pocket calculators. They choose different integers
and check, whether or not they are divisible by 11. They only look at nine-digit numbers
consisting of all the digits 1, 2, . . . , 9. Anna claims that the probability of such a number to
be a multiple of 11 is exactly 1/11. Eva has a different opinion: she thinks the probability
is less than 1/11. Per thinks the probability is more than 1/11. Who is correct?
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NMC 17, April 3, 2003

03.1. Stones are placed on the squares of a chessboard having 10 rows and 14 columns.
There is an odd number of stones on each row and each column. The squares are coloured
black and white in the usual fashion. Show that the number of stones on black squares is
even. Note that there can be more than one stone on a square.

03.2. Find all triples of integers (x, y, z) satisfying

x3 + y3 + z3 − 3xyz = 2003.

03.3. The point D inside the equilateral triangle �ABC satisfies ∠ADC = 150◦. Prove
that a triangle with side lengths |AD|, |BD|, |CD| is necessarily a right-angled triangle.

03.4. Let R
∗ = R\{0} be the set of non-zero real numbers. Find all functions f : R

∗ → R
∗

satisfying

f(x) + f(y) = f(xy f(x + y)),

for x, y ∈ R
∗ and x + y �= 0.

NMC 18, April 1, 2004

04.1. 27 balls, labelled by numbers from 1 to 27, are in a red, blue or yellow bowl. Find
the possible numbers of balls in the red bowl, if the averages of the labels in the red, blue,
and yellow bowl are 15, 3 ja 18, respectively.

04.2. Let f1 = 0, f2 = 1, and fn+2 = fn+1 + fn, for n = 1, 2, . . ., be the Fibonacci
sequence. Show that there exists a strictly increasing infinite arithmetic sequence none
of whose numbers belongs to the Fibonacci sequence. [A sequence is arithmetic, if the
difference of any of its consecutive terms is a constant.]

04.3. Let x11, x21, . . . , xn1, n > 2, be a sequence of integers. We assume that all of
the numbers xi1 are not equal. Assuming that the numbers x1k, x2k, . . . , xnk have been
defined, we set

xi,k+1 =
1
2
(xik + xi+1,k), i = 1, 2, . . . , n − 1,

xn,k+1 =
1
2
(xnk + x1k).

Show that for n odd, xjk is not an integer for some j, k. Does the same conclusion hold
for n even?

04.4. Let a, b, and c be the side lengths of a triangle and let R be its circumradius. Show
that

1
ab

+
1
bc

+
1
ca

≥ 1
R2

.
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NMC 19. April 5, 2005

05.1. Find all positive integers k such that the product of the digits of k, in the decimal
system, equals

25
8

k − 211.

05.2. Let a, b, and c be positive real numbers. Prove that

2a2

b + c
+

2b2

c + a
+

2c2

a + b
≥ a + b + c.

05.3. There are 2005 young people sitting around a (large!) round table. Of these at most
668 are boys. We say that a girl G is in a strong position, if, counting from G to either
direction at any length, the number of girls is always strictly larger than the number of
boys. (G herself is included in the count.) Prove that in any arrangement, there always is
a girl in a strong position.

05.4. The circle C1 is inside the circle C2, and the circles touch each other at A. A line
through A intersects C1 also at B and C2 also at C. The tangent to C1 at B intersects C2

at D and E. The tangents of C1 passing through C touch C1 at F and G. Prove that D,
E, F , and G are concyclic.

NMC 20. March 30, 2006

06.1. Let B and C be points on two fixed rays emanating from a point A such that
AB + AC is constant. Prove that there exists a point D �= A such that the circumcircles
of the triangels ABC pass through D for every choice of B and C.

06.2. The real numbers x, y and z are not all equal and they satisfy

x +
1
y

= y +
1
z

= z +
1
x

= k.

Determine all possible values of k.

06.3. A sequence of positive integers {an} is given by

a0 = m and an+1 = a5
n + 487

for all n ≥ 0. Determine all values of m for which the sequence contains as many square
numbers as possible.

06.4. The squares of a 100× 100 chessboard are painted with 100 different colours. Each
square has only one colour and every colour is used exactly 100 times. Show that there
exists a row or a column on the chessboard in which at least 10 colours are used.
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NMC 21. March 29, 2007

07.1. Find one solution in positive integers to the equation

x2 − 2x − 2007y2 = 0.

07.2. A triangle, a line and three rectangles, with one side parallel to the given line, are
given in such a way that the rectangles completely cover the sides of the triangle. Prove
that the rectangles must completely cover the interior of the triangle.

07.3. The number 102007 is written on a blackboard, Anne and Berit play a game where
the player in turn makes one of two operations:

(i) replace a number x on the blackboard by two integer numbers a and b greater than 1
such that x = ab;

(ii) erase one or both of two equal numbers on the blackboard.

The player who is not able to make her turn loses the game. Who has a winning strategy?

07.4. A line through a point A intersects a circle in two points, B and C, in such a way
that B lies between A and C. From the point A draw the two tangents to the circle,
meeting the circle at points S and T . Let P be the intersection of the lines ST and AC.
Show that AP/PC = 2 · AB/BC.

NMC 22. March 31, 2008

08.1. Determine all real numbers A, B and C such that there exists a real function f that
satisfies

f (x + f(y)) = Ax + By + C.

for all real x and y.

08.2. Assume that n ≥ 3 people with different names sit around a round table. We call
any unordered pair of them, say M and N , dominating , if

(i) M and N do not sit on adjacent seats, and

(ii) on one (or both) of the arcs connecting M and N along the table edge, all people have
names that come alphabetically after the names of M and N .

Determine the minimal number of dominating pairs.

08.3. Let ABC be a triangle and let D and E be points on BC and CA, respectively, such
that AD and BE are angle bisectors of ABC. Let F and G be points on the circumcircle
of ABC such that AF and DE are parallel and FG and BC are parallel. Show that

AG

BG
=

AC + BC

AB + CB
.

08.4. The difference between the cubes of two consecutive positive integers is a square n2,
where n is a positive integer. Show that n is the sum of two squares.
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NMC 23. April l2, 2009

09.1.A point P is chosen in an arbitrary triangle. Three lines are drawn through P which
are parallel to the sides of the triangle. The lines divide the triangle into three smaller
triangles and three parallelograms. Let f be the ratio between the total area of the three
smaller triangles and the area of the given triangle. Show that f ≥ 1

3 and determine those
points P for which f = 1

3
.

09.2. On a faded piece of paper it is possible, with some effort, to discern the following:

(x2 + x + a)(x15 − . . .) = x17 + x13 + x5 − 90x4 + x − 90.

Some parts have got lost, partly the constant term of the first factor of the left side, partly
the main part of the other factor. It would be possible to restore the polynomial forming
the other factor, but we restrict ourselves to asking the question: What is the value of
the constant term a? We assume that all polynomials in the statement above have only
integer coefficients.

09.3. The integers 1, 2, 3, 4 and 5 are written on a blackboard. It is allowed to wipe
out two integers a and b and replace them with a + b and ab. Is it possible, by repeating
this procedure, to reach a situation where three of the five integers on the blackboard are
2009?

09.4. There are 32 competitors in a tournament. No two of them are equal in playing
strength, and in a one against one match the better one always wins. Show that the gold,
silver, and bronze medal winners can be found in 39 matches.

NMC 24. April 13, 2010

10.1. A function f : Z → Z+, where Z+ is the set of positive integers, is non-decreasing
and satisfies f(mn) = f(m)f(n) for all relatively prime positive integers m and n. Prove
that f(8)f(13) ≥ (f(10))2.

10.2. Three circles ΓA, ΓB and ΓC share a common point of intersection O. The other
common of ΓA and ΓB is C, that of ΓA and ΓC is B and that of ΓC and ΓB is A. The
line AO intersects the circle ΓC in the poin X �= O. Similarly, the line BO intersects the
circle ΓB in the point Y �= O, and the line CO intersects the circle ΓC in the point Z �= O.
Show that

|AY ||BZ||CX |
|AZ||BX ||CY | = 1.

10.3. Laura has 2010 lamps connected with 2010 buttons in front of her. For each button,
she wants to know the corresponding lamp. In order to do this, she observes which lamps
are lit when Richard presses a selection of buttons. (Not pressing anything is also a
possible selection.) Richard always presses the buttons simultaneously, so the lamps are
lit simultaneously, too.

a) If Richard chooses the buttons to be pressed, what is the maximum number of different
combinations of buttons he can press until Laura can assign the buttons to the lamps
correctly?
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b) Supposing that Laura will choose the combinations of buttons to be pressed, what
is the minimum number of attempts she has to do until she is able to associate the
buttons with the lamps in a correct way?

10.4. A positive integer is called simple if its ordinary decimal representation consists
entirely of zeroes and ones. Find the least positive integer k such that each positive
integer n can be written as n = a1 ± a2 ± a3 ± · · · ± ak, where a1, . . . , ak are simple.

NMC 25. April 4, 2011

11.1. When a0, a1, . . . , a1000 denote digits, can the sum of the 1001-digit numbers
a0a1 . . . a1000 and a1000a999 . . . a0 have odd digits only?
11.2. In a triangle ABC assume AB = AC, and let D and E be points on the extension
of segment BA beyond A and on the segment BC, respectively, such that the lines CD

and AE are parallel. Prove that CD ≥ 4h

BC
CE, where h is the height from A in triangle

ABC. When does equality hold?
11.3. Find all functions f such that

f(f(x) + y) = f(x2 − y) + 4yf(x)

for all real numbers x and y.

11.4. Show that for any integer n ≥ 2 the sum of the fractions
1
ab

, where a and b are

relatively prime positive integers such that a < b ≤ n and a + b > n, equals
1
2
.
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SOLUTIONS

87.1. Nine journalists from different countries attend a press conference. None of these
speaks more than three languages, and each pair of the journalists share a common lan-
guage. Show that there are at least five journalists sharing a common language.
Solution. Assume the journalists are J1, J2, . . . , J9. Assume that no five of them have
a common language. Assume the languages J1 speaks are L1, L2, and L3. Group J2, J3,
. . . , J9 according to the language they speak with J1. No group can have more than three
members. So either there are three groups of three members each, or two groups with
three members and one with two. Consider the first alternative. We may assume that J1

speaks L1 with J2, J3, and J4, L2 with J5, J6, and J7, and L3 with J8, J9, and J2 . Now
J2 speaks L1 with J1, J3, and J4, L3 with J1, J8, and J9. J2 must speak a fourth language,
L4, with J5, J6, and J7. But now J5 speaks both L2 and L4 with J2, J6, and J7. So J5

has to use his third language with J1, J4, J8, and J9. This contradicts the assumption
we made. So we now may assume that J1 speaks L3 only with J8 and J9. As J1 is not
special, we conclude that for each journalist Jk, the remaining eight are divided into three
mutually exclusive language groups, one of which has only two members. Now J2 uses L1

with three others, and there has to be another language he also speaks with three others.
If this were L2 or L3, a group of five would arise (including J1). So J2 speaks L4 with
three among J5, . . . , J9. Either two of these three are among J5, J6, and J7, or among
J8, J9. Both alternatives lead to a contradiction to the already proved fact that no pair
of journalists speaks two languages together. The proof is complete.

Figure 1.

87.2. Let ABCD be a parallelogram in the plane. We draw two circles of radius R, one
through the points A and B, the other through B and C. Let E be the other point of



15

intersection of the circles. We assume that E is not a vertex of the parallelogram. Show
that the circle passing through A, D, and E also has radius R.
Solution. (See Figure 1.) Let F and G be the centers of the two circles of radius R
passing through A and B; and B and C, respectively. Let O be the point for which the the
rectangle ABGO is a parallelogram. Then ∠OAD = ∠GBC, and the triangles OAD and
GBC are congruent (sas). Since GB = GC = R, we have OA = OD = R. The quadrangle
EFBG is a rhombus. So EF ‖GB ‖OA. Moreover, EF = OA = R, which means that
AFEO is a parallelogram. But this implies OE = AF = R. So A, D, and E all are on
the circle of radius R centered at O.
87.3. Let f be a strictly increasing function defined in the set of natural numbers satisfying
the conditions f(2) = a > 2 and f(mn) = f(m)f(n) for all natural numbers m and n.
Determine the smallest possible value of a.
Solution. Since f(n) = n2 is a function satisfying the conditions of the problem, the
smallest posiible a is at most 4. Assume a = 3. It is easy to prove by induction that
f(nk) = f(n)k for all k ≥ 1. So, taking into account that f is strictly increasing, we get

f(3)4 = f(34) = f(81) > f(64) = f(26) = f(2)6

= 36 = 272 > 252 = 54

as well as

f(3)8 = f(38) = f(6561) < f(8192)
= f(213) = f(2)13 = 313 < 68.

So we arrive at 5 < f(3) < 6. But this is not possible, since f(3) is an integer. So a = 4.
87.4. Let a, b, and c be positive real numbers. Prove:

a

b
+

b

c
+

c

a
≤ a2

b2
+

b2

c2
+

c2

a2
.

Solution. The arithmetic-geometric inequality yields

3 = 3
3

√
a2

b2
· b2

c2
· c2

a2
≤ a2

b2
+

b2

c2
+

c2

a2
,

or
√

3 ≤
√

a2

b2
+

b2

c2
+

c2

a2
. (1)

On the other hand, the Cauchy–Schwarz inequality implies

a

b
+

b

c
+

c

a
≤
√

12 + 12 + 12

√
a2

b2
+

b2

c2
+

c2

a2

=
√

3

√
a2

b2
+

b2

c2
+

c2

a2
.

(2)

We arrive at the inequality of the problem by combining (1) and (2).
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88.1. The positive integer n has the following property: if the three last digits of n are
removed, the number 3

√
n remains. Find n.

Solution. If x = 3
√

n, and y, 0 ≤ y < 1000, is the number formed by the three last digits
of n, we have

x3 = 1000x + y.

So x3 ≥ 1000x, x2 > 1000, and x > 31. On the other hand, x3 < 1000x + 1000, or
x(x2 − 1000) < 1000. The left hand side of this inequality is an increasing function of x,
and x = 33 does not satisfy the inequality. So x < 33. Since x is an integer, x = 32 and
n = 323 = 32768.
88.2. Let a, b, and c be non-zero real numbers and let a ≥ b ≥ c. Prove the inequality

a3 − c3

3
≥ abc

(
a − b

c
+

b − c

a

)
.

When does equality hold?
Solution. Since c − b ≤ 0 ≤ a − b, we have (a − b)3 ≥ (c − b)3, or

a3 − 3a2b + 3ab2 − b3 ≥ c3 − 3bc2 + 3b2c − b3.

On simplifying this, we immediately have

1
3
(a3 − c3) ≥ a2b − ab2 + b2c − bc2 = abc

(
a − b

c
+

b − c

a

)
.

A sufficient condition for equality is a = c. If a > c, then (a− b)3 > (c− b)3, which makes
the proved inequality a strict one. So a = c is a necessary condition for equality, too.
88.3. Two concentric spheres have radii r and R, r < R. We try to select points A, B
and C on the surface of the larger sphere such that all sides of the triangle ABC would be
tangent to the surface of the smaller sphere. Show that the points can be selected if and
only if R ≤ 2r.
Solution. Assume A, B, and C lie on the surface Γ of a sphere of radius R and center
O, and AB, BC, and CA touch the surface γ of a sphere of radius r and center O. The
circumscribed and inscribed circles of ABC then are intersections of the plane ABC with
Γ and γ, respectively. The centers of these circles both are the foot D of the perpendicular
dropped from O to the plane ABC. This point lies both on the angle bisectors of the
triangle ABC and on the perpendicular bisectors of its sides. So these lines are the same,
which means that the triangle ABC is equilateral, and the center of the circles is the
common point of intersection of the medians of ABC. This again implies that the radii of
the two circles are 2r1 and r1 for some real number r1. Let OD = d. Then 2r1 =

√
R2 − d2

and r1 =
√

r2 − d2. Squaring, we get R2−d2 = 4r2−4d2, 4r2−R2 = 3d2 ≥ 0, and 2r ≥ R.
On the other hand, assume 2r ≥ R. Consider a plane at the distance

d =

√
4r2 − R2

3
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from the common center of the two spheres. The plane cuts the surfaces of the spheres
along concentric circles of radii

r1 =

√
R2 − r2

3
, R1 = 2

√
R2 − r2

3
.

The points A, B, and C can now be chosen on the latter circle in such a way that ABC
is equilateral.
88.4. Let mn be the smallest value of the function

fn(x) =
2n∑

k=0

xk.

Show that mn → 1
2 , as n → ∞.

Solution. For n > 1,

fn(x) = 1 + x + x2 + · · ·
= 1 + x(1 + x2 + x4 + · · ·) + x2(1 + x2 + x4 · · ·)

= 1 + x(1 + x)
n−1∑
k=0

x2k.

From this we see that fn(x) ≥ 1, for x ≤ −1 and x ≥ 0. Consequently, fn attains its
minimum value in the interval (−1, 0). On this interval

fn(x) =
1 − x2n+1

1 − x
>

1
1 − x

>
1
2
.

So mn ≥ 1
2
. But

mn ≤ fn

(
−1 +

1√
n

)
=

1

2 − 1√
n

+

(
1 − 1√

n

)2n+1

2 − 1√
n

.

As n → ∞, the first term on the right hand side tends to the limit
1
2
. In the second term,

the factor (
1 − 1√

n

)2n

=

((
1 − 1√

n

)√
n
)2

√
n

of the nominator tehds to zero, because

lim
k→∞

(
1 − 1

k

)k

= e−1 < 1.

So limn→∞ mn =
1
2
.
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89.1 Find a polynomial P of lowest possible degree such that
(a) P has integer coefficients,
(b) all roots of P are integers,
(c) P (0) = −1,
(d) P (3) = 128.
Solution. Let P be of degree n, and let b1, b2, . . . , bm be its zeroes. Then

P (x) = a(x − b1)r1(x − b2)r2 · · · (x − bm)rm ,

where r1, r2, . . . , rm ≥ 1, and a is an integer. Because P (0) = −1, we have
abr1

1 br2
2 · · · brm

m (−1)n = −1. This can only happen, if |a| = 1 and |bj| = 1 for all
j = 1, 2, . . . , m. So

P (x) = a(x − 1)p(x + 1)n−p

for some p, and P (3) = a · 2p22n−2p = 128 = 27. So 2n − p = 7. Because p ≥ 0 and n are
integers, the smallest possible n, for which this condition can be true is 4. If n = 4, then
p = 1, a = 1. – The polynomial P (x) = (x − 1)(x + 1)3 clearly satisfies the conditions of
the problem.
89.2. Three sides of a tetrahedron are right-angled triangles having the right angle at their
common vertex. The areas of these sides are A, B, and C. Find the total surface area of
the tetrahedron.
Solution 1. Let PQRS be the tetrahedron of the problem and let S be the vertex common
to the three sides which are right-angled triangles. Let the areas of PQS, QRS, and RPS
be A, B, and C, respectively. Denote the area of QRS by X . If SS′ is the altitude from
S (onto PQR) and ∠RSS′ = α, ∠PSS′ = β, ∠QSS′ = γ, the rectangular parallelepiped
with SS′ as a diameter, gives by double use of the Pythagorean theorem

SS′2 = (SS′ cos α)2 + (SS′ sin α)2

= (SS′ cos α)2 + (SS′ cos β)2 + (SS′ cos γ)2,

or
cos2 α + cos2 β + cos2 γ = 1 (1)

(a well-known formula). The magnitude of the dihedral angle between two planes equals
the angle between the normals of the planes. So α, β, and γ are the magnitudes of the
dihedral angles between PQR and PQS, QRS, and RPS, respectively. Looking at the
projections of PQR onto the three other sides of PQRS, we get A = X cos α, B = X cos β,
and C = X cos γ. But (1) now yields X2 = A2 + B2 + C2. The total area of PQRS then
equals A + B + C +

√
A2 + B2 + C2.

Solution 2. Use the symbols introduced in the first solution. Align the coordinate axes

so that
−→
SP = a

−→
i ,

−→
SQ = b

−→
j , and

−→
CR = c

−→
k . The 2A = ab, 2B = bc, and 2C = ac. By

the well-known formula for the area of a triangle, we get

2X = |−→PQ ×−→
PR| = |(b−→j − a

−→
i ) × (c

−→
k − a

−→
i )|

= |bc−→i + ba
−→
k + ac

−→
j | = 2

√
(bc)2 + (ba)2 + (ac)2

= 2
√

B2 + A2 + c2.
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So X =
√

B + A + C, and we have A + B + C +
√

B + A + C as the total area.
89.3. Let S be the set of all points t in the closed interval [−1, 1] such that for the sequence
x0, x1, x2, . . . defined by the equations x0 = t, xn+1 = 2x2

n − 1, there exists a positive
integer N such that xn = 1 for all n ≥ N . Show that the set S has infinitely many
elements.
Solution. All numbers in the sequence {xn} lie in the interval [−1, 1]. For each n we can
pick an αn such that xn = cos αn. If xn = cos αn, then xn+1 = 2 cos2 αn − 1 = cos(2αn).
The nuber αn+1 can be chosen as 2αn, and by induction, αn can be chosen as 2nα0. Now
xn = 1 if and only if αn = 2kπ for some integer k. Take S′ = {cos(2−mπ)|m ∈ N}. Since
every α0 = 2−mπ multiplied by a sufficiently large power of 2 is a multiple of 2π, it follows
from what was said above that S′ ⊂ S. Since S′ is infinite, so is S.
89.4 For which positive integers n is the following statement true: if a1, a2, . . . , an are
positive integers, ak ≤ n for all k and

∑n
k=1 ak = 2n, then it is always possible to choose

ai1 , ai2 , . . . , aij
in such a way that the indices i1, i2, . . . , ij are different numbers, and∑j

k=1 aik
= n?

Solution. The claim is not true for odd n. A counterexample is provided by a1 = a2 =
· · · = an = 2. We prove by induction that the claim is true for all even n = 2k. If k = 1,
then a1 + a2 = 4 and 1 ≤ a1, a2 ≤ 2, so necessarily a1 = a2 = 2. A choice satisfying the
condition of the problem is a1. Now assume that the claim holds for any 2k − 2 integers
with sum 4k − 4. Let a1, a2, . . ., a2k be positive integers ≤ 2k with sum 4k. If one of the
numbers is 2k, the case is clear: this number alone can form the required subset. So we
may assume that all the numbers are ≤ 2k − 1. If there are at least two 2’s among the
numbers, we apply our induction hypothesis to the 2k−2 numbers which are left when two
2’s are removed. the sum of these numbers is 4k−4, so among them there is a subcollection
with sum 2k − 2. Adding one 2 to the collection raises the sum to 2k. As the next case
we assume that there are no 2’s among the numbers. Then there must be some 1’s among
them. Assume there are x 1’s among the numbers. Then 2k − x of the numbers are ≥ 3.
So x + 3(2k − x) ≤ 4k or k ≤ x. Now 4k − x is between 2k and 3k, and it is and it is the
sum of more than one of the numbers in the collection, and these numbers are at least 3
and at most 2k − 1. It follows that we can find numbers ≥ 3 in the collection with sum
between k and 2k. Adding a sufficient number of 1’s to this collection we obtain the sum
2k. We still have the case in which there is exactly one 2 in the collection. Again, denoting
the number of 1’s by x, we obtain x + 2 + 3(2k − x − 1) ≤ 4k, which implies 2k − 1 ≤ 2x.
Because x is an integer, we have k ≤ x. The rest of the proof goes as in the previous case.
90.1. Let m, n, and p be odd positive integers. Prove that the number

(n−1)p∑
k=1

km

is divisible by n.
Solution. Since n is odd, the sum has an even number of terms. So we can write it as

1
2 (n−1)p∑

k=1

(km + ((n − 1)p − k + 1)m) . (1)
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Because m is odd, each term in the sum has k +(n−1)p −k +1 = (n−1)p +1 as a factor.
As p is odd, too, (n− 1)p +1 = (n− 1)p +1p has (n− 1)+1 = n as a factor. So each term
in the sum (1) is divisible by n, and so is the sum.

90.2. Let a1, a2, . . . , an be real numbers. Prove

3

√
a3
1 + a3

2 + . . . + a3
n ≤

√
a2
1 + a2

2 + . . . + a2
n. (1)

When does equality hold in (1)?

Solution. If 0 ≤ x ≤ 1, then x3/2 ≤ x, and equality holds if and only if x = 0 or x = 1.
– The inequality is true as an equality, if all the ak’s are zeroes. Assume that at least one
of the numbers ak is non-zero. Set

xk =
a2

k∑n
j=1 a2

j

.

Then 0 ≤ xk ≤ 1, and by the remark above,

n∑
k=1

(
a2

k∑n
j=1 a2

j

)3/2

≤
n∑

k=1

a2
k∑n

j=1 a2
j

= 1.

So
n∑

k=1

a3
k ≤

⎛
⎝ n∑

j1

a2
j

⎞
⎠3/2

,

which is what was supposed to be proved. For equality, exactly on xk has to be one and
the rest have to be zeroes, which is equivalent to having exactly one of the ak’s positive
and the rest zeroes.

Figure 2.
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90.3. Let ABC be a triangle and let P be an interior point of ABC. We assume that a line
l, which passes through P , but not through A, intersects AB and AC (or their extensions
over B or C) at Q and R, respectively. Find l such that the perimeter of the triangle AQR
is as small as possible.
Solution. (See Figure 2.) Let

s =
1
2
(AR + RQ + QA).

Let C be the excircle of AQR tangent to QR, i.e. the circle tangent to QR and the extensions
of AR and AQ. Denote the center of C by I and the measure of ∠QAR by α. I is on the

bisector of ∠QAR. Hence ∠QAI = ∠IAR =
1
2
α. Let C touch RQ, the extension of AQ,

and the extension of AR at X , Y , and Z, respectively. Clearly

AQ + QX = AY = AZ = AR + RX,

so
AZ = AI cos

1
2
α = s.

Hence s and the perimeter of AQR is smallest, when AI is smallest. If P �= X , it is possible
to turn the line through P to push C deeper into the angle BAC. So the minumum for
AI is achieved precisely as X = P . To construct minimal triangle, we have to draw a
circle touching the half lines AB and AC and passing through P . This is accomplished
by first drawing an arbitrary circle touching the half lines, and then performing a suitable
homothetic transformation of the circle to make it pass through P .
90.4. It is possible to perform three operations f , g, and h for positive integers: f(n) =
10n, g(n) = 10n + 4, and h(2n) = n; in other words, one may write 0 or 4 in the end of
the number and one may divide an even number by 2. Prove: every positive integer can be
constructed starting from 4 and performing a finite number of the operations f , g, and h
in some order.
Solution. All odd numbers n are of the form h(2n). All we need is to show that every even
number can be obtained fron 4 by using the operations f , g, and h. To this end, we show
that a suitably chosen sequence of inverse operations F = f−1, G = g−1, and H = h−1

produces a smaller even number or the number 4 from every positive even integer. The
operation F can be applied to numbers ending in a zero, the operation G can be applied
to numbers ending in 4, and H(n) = 2n. We obtain

H(F (10n)) = 2n,

G(H(10n + 2)) = 2n, n ≥ 1,

H(2) = 4,

H(G(10n + 4)) = 2n,

G(H(H(10n + 6))) = 4n + 2,

G(H(H(H(10n + 8)))) = 8n + 6.

After a finite number of these steps, we arrive at 4.
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91.1. Determine the last two digits of the number

25 + 252
+ 253

+ · · ·+ 251991
,

written in decimal notation.
Solution. We first show that all numbers 25k

are of the form 100p + 32. This can be
shown by induction. The case k = 1 is clear (25 = 32). Assume 25k

= 100p + 32. Then,
by the binomial formula,

25k+1
=
(
25k
)5

= (100p + 32)5 = 100q + 325

and

(30 + 2)5 = 305 + 5 · 304 · 2 + 10 · 303 · 4 + 10 · 302 · 8 + 5 · 30 · 16 + 32
= 100r + 32.

So the last two digits of the sum in the problem are the same as the last digits of the
number 1991 · 32, or 12.
91.2. In the trapezium ABCD the sides AB and CD are parallel, and E is a fixed point
on the side AB. Determine the point F on the side CD so that the area of the intersection
of the triangles ABF and CDE is as large as possible.

Figure 3.

Solution 1. (See Figure 3.) We assume CD < AB. Let AD and BC intersect at H and
EH and DC at G. Let DE intersect AF at P and FB intersect EC at Q. Denote the area
of a figure F by |F|. Since |ABF | does not depend on the choice of F on DC, |EQFP |
is maximized when |AEP | + |EBQ| is minimized. We claim that this takes place when
F = G. Let R and S be the points of intersection of the trapezia AEGD and EBCG,
respectively. Then RS‖AB. (To see this, consider the pairs AER and GDR; EBS and
CGS of similar triangles. The ratios of their altitudes are AE : DG and EB : GC,
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respectively. But both ratios are equal to EG : HG. As the sum of the ratios in both pairs
is the altitude of ABCD, the altitudes of, say AER and EBS are equal, which inplies
the claim.) Denote the points where RS intersects FA and FB by U and V , respectively.
Then |AUR| = |BV S|. (RU and SV are the same fraction of GF , and both triangles have
the same altitude.) Assume that F lies between G and C. Then

|APE| + |EBQ| > |APE|+ |EBS|+ |BSV |
= |APE|+ |EBS| + |AUR| > |APE| + |EBS| + |APR|

= |ARE|+ |EBS|.

A similar inequality can be established, when F is between G and D. So the choice F = G
minimizes |AEP | + |EBQ| and maximizes |EQFP |. – Proofs in the cases AB = CD and
AB < CD go along similar lines.
Solution 2. We again minimize |AEP |+ |EBQ|. Set AB = a, CD = b, AE = c, DF = x,
and denote the altitude of ABCD by h and the altitudes of AEP and EBQ by h1 and h2,
respectively. Since AEP and FDP are similar, as well as EBQ and CFQ, we have

c

x
=

h1

h − h1
, and

a − c

b − x
=

h2

h − h2
.

Solving from these, we obtain

h1 =
ch

x + c
, h2 =

(a − c)h
a + b − c − x

.

As h1c + h2(a − c) is double the area to be minimized, we seek the minimum of

f(x) =
c2

x + c
+

(a − c)2

2a − c − x
.

The necessary minimum condition f ′(x) = 0 means

c2

(x + c)2
=

(a − c)2

(a + b − c − x)2
.

Solving this, we obtain x =
bc

a
, and since the left hand side of the equation has a decreasing

and the right hand side an increasing function of x in the relevant interval 0 ≤ x ≤ b, we
see that x = c is the only root of f ′)x) = 0, and we also note that f ′(x) is increasing. So

f(x) has a global minimum at x =
bc

a
. This means that, in terms of the notation of the

first solution, F = G is the solution of the problem.
91.3. Show that

1
22

+
1
32

+ . . . +
1
n2

<
2
3

for all n ≥ 2.



24

Solution. Since
1
j2

<
1

j(j − 1)
=

1
j − 1

− 1
j
,

we have
n∑

j=k

1
j2

<

(
1

k − 1
− 1

k

)
+
(

1
k
− 1

k + 1

)
+ · · · +

(
1

n − 1
− 1

n

)

=
1

k − 1
− 1

n
<

1
k − 1

.

From this we obtain for k = 6
1
22

+
1
32

+ . . . +
1
n2

<
1
4

+
1
9

+
1
16

+
1
25

+
1
5

=
2389
3600

<
2
3
.

91.4. Let f(x) be a polynomial with integer coefficients. We assume that there exists a
positive integer k and k consecutive integers n, n + 1, . . . , n + k − 1 so that none of the
numbers f(n), f(n + 1), . . . , f(n + k − 1) is divisible by k. Show that the zeroes of f(x)
are not integers.
Solution. Let f(x) = a0x

d + a1x
d−1 + · · ·+ ad. Assume that f has a zero m which is an

integer. Then f(x) = (x − m)g(x), where g is a polynomial. If g(x) = b0x
d−1 + b1x

d−2 +
· · ·+ bd−1, then a0 = b0, and ak = bk − mbk−1, 1 ≤ k ≤ d − 1. So b0 is an integer, and by
induction all bk’s are integers. Because f(j) is not divisible by k for k consequtive values
of j, no one of the k consequtive integers j −m, j = n, n+1, . . . , n+k − 1, is divisible by
k. But this is a contradiction, since exactly one of k consequtive integers is divisible by k.
So f cannot have an integral zero.
92.1. Determine all real numbers x > 1, y > 1, and z > 1, satisfying the equation

x + y + z +
3

x − 1
+

3
y − 1

+
3

z − 1

= 2
(√

x + 2 +
√

y + 2 +
√

z + 2
)

.

Solution. Consider the function f ,

f(t) = t +
3

t − 1
− 2

√
t + 2,

defined for t > 1. The equation of the problem can be written as

f(x) + f(y) + f(z) = 0.

We reformulate the formula for f :

f(t) =
1

t − 1
(
t2 − t + 3 − 2(t − 1)

√
t + 2

)
=

1
t − 1

(
t2 − 2t + 1 +

(√
t + 2

)2 − 2(t − 1)
√

t + 2
)

=
1

t − 1
(
t − 1 −√

t + 2
)2

.
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So f(t) ≥ 0, and f(t) = 0 for t > 1 only if

t − 1 =
√

t + 2

or
t2 − 3t − 1 = 0.

The only t satisfying this condition is

t =
3 +

√
13

2
.

So the only solution to the equation in the problem is given by

x = y = z =
3 +

√
13

2
.

92.2. Let n > 1 be an integer and let a1, a2, . . . , an be n different integers. Show that the
polynomial

f(x) = (x − a1)(x − a2) · · · (x − an) − 1

is not divisible by any polynomial with integer coefficients and of degree greater than zero
but less than n and such that the highest power of x has coefficient 1.
Solution. Suppose g(x) is a polynomial of degree m, where 1 ≤ m < n, with integer
coefficients and leading coefficient 1, such that

f(x) = g(x)h(x),

whre h(x) is a polynomial. Let

g(x) = xm + bm−1x
m−1 + · · · + b1x + b0,

h(x) = xn−m + cn−m−1x
n−m−1 + · · · + c1x + c0.

We show that the coefficients of h(x) are integers. If they are not, there is a greatest index
j = k such that ck is not an integer. But then the coefficient of f multiplying xk+m –
which is an integer – would be ck + bm−1ck+1 + bm−2ck+2 + . . . bk−m. All terms except the
first one in this sum are integers, so the sum cannot be an integer. A contradiction. So
h(x) is a polynomial with integral coefficients. Now

f(ai) = g(ai)h(ai) = −1,

for i = 1, 2, . . . , n, and g(ai) and h(ai) are integers. This is only possible, if g(ai) =
−f(ai) = ±1 and g(ai) + h(ai) = 0 for i = 1, 2, . . . , n. So the polynomial g(x) + h(x) has
at least n zeroes. But the degree of g(x) + h(x) is less than n. So g(x) = −h(x) for all x,
and f(x) = −g(x)2. This is impossible, however, because f(x) → +∞, as x → +∞. This
contradiction proves the claim.
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Figure 4.

92.3 Prove that among all triangles with inradius 1, the equilateral one has the smallest
perimeter.

Solution. (See Figure 4.) The area T , perimeter p and inradius r satisfy 2T = rp. (Divide
the triangle into three triangles with a common vertex at the incenter of the triangle.) So
for a fixed inradius, the triangle with the smallest perimeter is the one which has the
smallest area. To prove that the equilateral triangles minimize the area among triangles
with a fixed incircle, we utilize three trivial facts, which the reader may prove for his/her
enjoyment:

Lemma 1. If AB and CD are two equal chords of a circle and if they intersect at P , and
if D is on the shorter arc AB, then APD and CPB are congruent triangles.

Lemma 2. If C1 and C2 concentric circles, then all chords of C1 which are tangent to C2 are
equal.

Lemma 3. Given a circle C, the set of points P such that the tangents to C through P
meet at a fixed angle, is a circle concentric to C.

Now consider an equilateral triangle ABC with incircle C1 and circumcircle C2. Let DEF
be another triangle with incircle C1. If DEF is not equilateral, it either has two angles
< 60◦ and one angle > 60◦, two angles > 60◦ and one angle < 60◦, or one angle < 60, one
= 60◦, and one > 60◦. In the first case, using Lemma 3 and its immediate consequences,
we may rotate the triangles and rename the vertices so that F is inside C2 and D and E
are outside it. Let DF intersect C2 at G and H, let EF intersect C2 at K and J (J on
the shorter arc HG), and let AB and HG intersect at P , and AC and JK at Q. Since A
is on different sides of HG and JK than B and C, respectively, A must be on the shorter
arc JG. By Lemma 1, BPH and APG are congruent and JQA and QCK are congruent.
We compute, denoting the area of a figure F by |F|:

|FDE| = |ABC| + |DBP | − |PFA| + |QCE| − |AFQ|
> |ABC| + |PHB| − |PFA| + |CKQ| − |AFG|

> |ABC| + |PHB| − |PGA| + |CKQ| − |QAJ | = |ABC|.

The two other cases can be treated analogously.
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92.4. Peter has many squares of equal side. Some of the squares are black, some are white.
Peter wants to assemble a big square, with side equal to n sides of the small squares, so that
the big square has no rectangle formed by the small squares such that all the squares in the
vertices of the rectangle are of equal colour. How big a square is Peter able to assemble?

Solution. We show that Peter only can make a 4×4 square. The construction is possible,
if n = 4:

Now consider the case n = 5. We may assume that at least 13 of the 25 squares are black.
If five black squares are on one horizontal row, the remaining eight ones are distributed on
the other four rows. At least one row has two black squres. A rectangle with all corners
black is created. Next assume that one row has four black squares. Of the remaing 9
squares, at least three are one row. At least two of these three have to be columns having
the assumed four black squares. If no row has more than four black squares, there have
to be at least three rows with exactly three black squares. Denote these rows by A, B,
and C. Let us call the columns in which the black squares on row A lie black columns,
and the other two columns white columns. If either row B or row C has at least two black
squares which are on black columns, a rectancle with black corners arises. If both rows
B and C have only one black square on the black columns, then both of them have two
black squares on the two white columns, and they make the black corners of a rectangle.
So Peter cannot make a 5 × 5 square in the way he wishes.

93.1. Let F be an increasing real function defined for all x, 0 ≤ x ≤ 1, satisfying the
conditions

(i) F
(x

3

)
=

F (x)
2

,

(ii) F (1 − x) = 1 − F (x).

Determine F

(
173
1993

)
and F

(
1
13

)
.

Solution. Condition (i) implies F (0) =
1
2
F (0), so F (0) = 0. Because of condition (ii),

F (1) = 1 − F (0) = 1. Also F

(
1
3

)
=

1
2

and F

(
2
3

)
= 1 − F

(
1
3

)
=

1
2
. Since F is an

increasing function, this is possible only if F (x) =
1
2

for all x ∈
[
1
3
,

2
3

]
. To determine the

first of the required values of F , we use (i) and (ii) to transform the argument into the
middle third of [0, 1]:

F

(
173
1993

)
=

1
2
F

(
519
1993

)
=

1
4
F

(
1557
1993

)
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=
1
4

(
1 − F

(
436
1993

))
=

1
4

(
1 − 1

2
F

(
1308
1993

))

=
1
4

(
1 − 1

4

)
=

3
16

.

To find the second value of F , we use (i) and (ii) to form an equation fron which the value
can be solved. Indeed,

F

(
1
13

)
= 1 − F

(
12
13

)
= 1 − 2F

(
4
13

)

= 1 − 2
(

1 − F

(
9
13

))
= 2F

(
9
13

)
− 1 = 4F

(
3
13

)
− 1

= 8F

(
1
13

)
− 1.

From this we solve

F

(
1
13

)
=

1
7
.

93.2. A hexagon is inscribed in a circle of radius r. Two of the sides of the hexagon have
length 1, two have length 2 and two have length 3. Show that r satisfies the equation

2r3 − 7r − 3 = 0.

Figure 5.

Solution. (See Figure 5.) We join the vertices of the hexagon to the center O of its
circumcircle. We denote by α the central angles corresponding the chords of length 1, by
β those corresponding the chords of length 2, and by γ those corresponding the chords
of length 3. Clearly α + β + γ = 180◦. We can move three chords of mutually different
length so that they follow each other on the circumference. We thus obtain a quadrilateral
ABCD where AB = 2r is a diameter of the circle, BC = 1, CD = 2, and DA = 3. Then
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∠COB = α and ∠CAB =
α

2
. Then ∠ABC = 90◦ − α

2
, and, as ABCD is an inscribed

quafdrilateral, ∠CDA = 90◦ +
α

2
. Set AC = x. From triangles ABC and ACD we obtain

x2 + 1 = 4r2 and

x2 = 4 + 9 − 2 · 2 · 3 cos
(
90◦ +

α

2

)
= 13 + 12 sin

(α

2

)
.

From triangle ABC,

sin
(α

2

)
=

1
2r

.

We put this in the expression for x2 to obtain

4r2 = x2 + 1 = 14 + 12 · 1
2r

which is equivalent to
2r3 − 7r − 3 = 0.

93.3. Find all solutions of the system of equations⎧⎪⎨
⎪⎩

s(x) + s(y) = x

x + y + s(z) = z

s(x) + s(y) + s(z) = y − 4,

where x, y, and z are positive integers, and s(x), s(y), and s(z) are the numbers of digits
in the decimal representations of x, y, and z, respectively.
Solution. The first equation implies x ≥ 2 and the first and third equation together imply

s(z) = y − x − 4. (1)

So y ≥ x + 5 ≥ 7. From (1) and the second equation we obtain z = 2y − 4. Translated
to the values of s, these equation imply s(x) ≤ s(2y) ≤ s(y) + 1 and s(x) ≤ s(y). We
insert these inequalitien in the last equation of the problem to obtain y − 4 ≤ 3s(y) + 1 or
y ≤ 3s(y)+5. Since 10s(y)−1 ≤ y, the only possible values of s(y) are 1 and 2. If s(y) = 1,
then 7 ≤ y ≤ 3 + 5 = 8. If y = 7, x must be 2 and z = 2 · 7 − 4 = 10. But this does
not fit in the second equation: 2 + 7 + 2 �= 10. If y = 8, then z = 12, x = 2. The triple
(2, 8, 12) satisfies all the equations of the problem. If s(y) = 2, then y ≤ 6 + 5 = 11. The
only possibilities are y = 10 and y = 11. If y = 10, then z = 16 and x ≤ 5. The equation
s(x) + s(y) + s(z) = y − 4 = 6 is not satisfied. If y = 11, then z = 18 and x ≤ 6. Again,
the third equation is not satisfied. So x = 2, y = 8, and z = 12 is the only solution.
93.4. Denote by T (n) the sum of the digits of the decimal representation of a positive
integer n.
a) Find an integer N , for which T (k · N) is even for all k, 1 ≤ k ≤ 1992, but T (1993 · N)
is odd.



30

b) Show that no positive integer N exists such that T (k ·N) is even for all positive integers
k.
Solution. a) If s has n decimal digits and m = 10n+rs + s, then T (km) is even at
least as long as ks < 10n+r, because all non-zero digits appear in pairs in km. Choose
N = 5018300050183 or s = 50183, n = 5, r = 3. Now 1992 ·s = 99964536 < 108, so T (kN)
is even for all k ≤ 1992. But 1993 · s = 100014719, 1993 · N = 10001472000014719, and
T (1993 · N) = 39 is odd.
b) Assume that N is a positive integer for which T (kN) is even for all k. Consider the case
N = 2m first. Then T (km) = T (10km) = T (5kN). As T (5kN) is even for every k, then so
is T (km). Repeating the argument suffiently many times we arrive at an odd N , such that
T (kN) is even for all k. Assume now N = 10r +5. Then T (k(2r +1)) = T (10k(2r +1)) =

T (2kN). From this we conclude that the number
N

5
= 2r + 1 has the the property we are

dealing with. By repeating the argument, we arrive at an odd number N , which does not
have 5 as a factor, such that T (kN) is even for all k. Next assume N = 10r + 9. If N has
n digits and the decimal representation of N is ax . . . xb9, where the x’s can be any digits,
then, if b < 9, the decimal representation of 10n−1N + N is ax . . . x(b + 1)(a − 1)x . . . xb9.
This implies T (10n−2N + N) = 2T (N) − 9, which is an odd number. If the second last
digit b of N is 9, then 11N has 89 as its two last digits, and again we see that N has a
multiple kN with T (kn) odd. Finally, if the last digit of N is 1, the last digit of 9N is 9,
if the last digit of N is 3, the last digit of 3N is 9, and if the last digit of N is 7, the last
digit of 7N is 9. All these cases thus can be reduced to the cases already treated. So all
odd numbers have multiples with an odd sum of digits, and the proof is complete.
94.1. Let O be an interior point in the equilateral triangle ABC, of side length a. The
lines AO, BO, and CO intersect the sides of the triangle in the points A1, B1, and C1.
Show that

|OA1| + |OB1| + |OC1| < a.

Solution. Let HA, HB , and HC be the orthogonal projections of O on BC, CA, and AB,
respectively. Because 60◦ < ∠OA1B < 120◦,

|OHA| = |OA1| sin(∠OA1B) > |OA1|
√

3
2

.

In the same way,

|OHB| > |OB1|
√

3
2

and |OHC | > |OC1|
√

3
2

.

The area of ABC is a2

√
3

4
but also

a

2
(OHA + OHB + OHC) (as the sum of the areas of

the three triangles with common vertex O which together comprise ABC). So

|OHA| + |OHB| + |OHC | = a

√
3

2
,

and the claim follows at once.
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94.2. We call a finite plane set S consisting of points with integer coefficients a two-
neighbour set, if for each point (p, q) of S exactly two of the points (p + 1, q), (p, q + 1),
(p − 1, q), (p, q − 1) belong to S. For which integers n there exists a two-neighbour set
which contains exactly n points?
Solution. The points (0, 0), (1, 0), (1, 1), (0, 1) clearly form a two-neighbour set (which
we abbreviate as 2NS). For every even number n = 2k ≥ 8, the set S = {(0, 0), . . . ,
(k− 2, 0), (k− 2, 1), (k− 2, 2), . . . , (0, 2), (0, 1)} is a 2NS. We show that there is no 2NS
with n elements for other values n.
Assume that S is a 2NS and S has n points. We join every point in S to two of its
neighbours by a unit line segment. The ensuing figures are closed polygonal lines, since an
end-point of such a line would have only one neighbour. The polygons contains altogether
n segments (from each point, two segments emanate, and counting the emanating segments
means that the segments will be counted twice.) In each of the polygons, the number of
segments is even. When walking around such a polygon one has to take equally many
steps to the left as to the right, and equally many up and down. Also, n �= 2.
What remains is to show is that n �= 6. We may assume (0, 0) ∈ S. For reasons of
symmetry, essentially two possibilities exist: a) (−1, 0) ∈ S and (1, 0) ∈ S, or b) (1, 0) ∈ S
and (0, 1) ∈ S. In case a), (0, 1) /∈ S and (0, −1) /∈ S. Because the points (−1, 0), (0, 0),
and (1, 0) of S belong to a closed polygonal line, this line has to wind around either (0, 1)
or (0, −1). In both cases, the polygon has at least 8 segments. In case b) (1, 1) /∈ S
(because otherwise S would generate two polygons, a square an one with two segments).
Also (−1, 0) /∈ S, and (0, −1) /∈ S. The polygon which contains (1, 0), (0, 0), and (0, 1)
thus either winds around the point (1, 1), in which case it has at least 8 segments, or it
turns around the points (−1, 0) and (0, −1), in which case it has at least 10 segments. So
n = 6 always leads to a contradiction.
94.3. A piece of paper is the square ABCD. We fold it by placing the vertex D on the
point H of the side BC. We assume that AD moves onto the segment GH and that HG
intersects AB at E. Prove that the perimeter of the triangle EBH is one half of the
perimeter of the square.

Figure 6.

Solution. (See Figure 6.) The fold gives rise to an isosceles trapezium ADHG. Because of
symmetry, the distance of the vertex D from the side GH equals the distance of the vertex
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H from side AD; the latter distance is the side length a of the square. The line GH thus is
tangent to the circle with center D and radius a. The lines AB and BC are tangent to the
same circle. If the point common to GH and the circle is F , then AE = EF and FH = HC.
This implies AB+BC = AE+EB+BH+HC = EF +EB+BH+HF = EH+EB+BH,
which is equivalent to what we were asked to prove.

94.4. Determine all positive integers n < 200, such that n2 + (n + 1)2 is the square of an
integer.

Solution. We determine the integral solutions of

n2 + (n + 1)2 = (n + p)2, p ≥ 2.

The root formula for quadratic equations yields

n = p − 1 +
√

2p(p − 1) ≥ 2(p − 1).

Because n < 200, we have p ≤ 100. Moreover, the number 2p(p − 1) has to be the square
of an integer. If p is odd, p and 2(p − 1) have no common factors. Consequently, both p
and 2(p − 1) have to be squares. The only possible candidates are p = 9, p = 25, p = 49,
p = 81. The respective numbers 2(p − 1) are 16, 48, 96, and 160. Of these, only 16 is a
square. We thus have one solution n = 8 +

√
2 · 9 · 8 = 20, 202 + 212 = 841 = 292. If p is

even, the numbers 2p and p − 1 have no factors in common, so both are squares. Possible
candidates for 2p are 4, 16, 36, 64, 100, 144, and 196. The corresponding values of p − 1
are 1, 7, 31, 49, 71, 97. We obtain two more solutions: n = 1 + 2 = 3, 32 + 42 = 52, and
n = 49 + 70 = 119, 1192 + 1202 = 1692.

95.1. Let AB be a diameter of a circle with centre O. We choose a point C on the
circumference of the circle such that OC and AB are perpendicular to each other. Let
P be an arbitrary point on the (smaller) arc BC and let the lines CP and AB meet at
Q. We choose R on AP so that RQ and AB are perpendicular to each other. Show that
|BQ| = |QR|.

Figure 7.

Solution 1. (See Figure 7.) Draw PB. By the Theorem of Thales, ∠RPB = ∠APB =
90◦. So P and Q both lie on the circle with diameter RB. Because ∠AOC = 90◦,
∠RPQ = ∠CPA = 45◦. Then ∠RBQ = 45◦, too, and RBQ is an isosceles right triangle,
or |BQ| = |QR|.
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Solution 2. Set O = (0, 0), A = (−1, 0), B = (1, 0), C = (0, 1), and P = (t, u),

where t > 0, u > 0, and t2 + u2 = 1. The equation of line CP is y − 1 =
u − 1

t
x. So

Q =
(

t

1 − u
, 0
)

and |BQ| =
t

1 − u
− 1 =

t + u − 1
1 − u

. On the other hand, the equation of

line AP is y =
u

t + 1
(x + 1). The y coordinate of R and also |QR| is

u

t + 1

(
t

1 − u
+ 1
)

=

ut + u − u2

(t + 1)(1 − u)
=

ut + u − 1 + t2

(t + 1)(1 − u)
=

u + t − 1
1 − u

. The claim has been proved.

95.2. Messages are coded using sequences consisting of zeroes and ones only. Only se-
quences with at most two consecutive ones or zeroes are allowed. (For instance the sequence
011001 is allowed, but 011101 is not.) Determine the number of sequences consisting of
exactly 12 numbers.
Solution 1. Let Sn be the set of acceptable sequences consisting of 2n digits. We partition
Sn in subsets An, Bn, Cn, and Dn, on the basis of the two last digits of the sequence.
Sequences ending in 00 are in An, those ending in 01 are in Bn, those ending in 10 are
in Cn, and those ending in 11 are in Dn. Denote by xn, an, bn, cn, and dn the number
of elements in Sn, An, Bn, Cn, and Dn. We compute x6. Because S1 = {00, 01, 10, 11},
x1 = 4 and a1 = b1 = c1 = d1 = 1. Every element of An+1 can be obtained in a unique
manner from an element of Bn or Dn by adjoining 00 to the end. So an+1 = bn + dn. The
elements of Bn+1 are similarly obtained from elements of Bn, Cn, and Dn by adjoining 01
to the end. So bn+1 = bn + cn + dn. In a similar manner we obtain the recursion formulas
cn+1 = an + bn + cn and dn+1 = an + cn. So an+1 + dn+1 = (bn + dn) + (an + cn) = xn

and xn+1 = 2an + 3bn + 3cn + 2dn = 3xn − (an + bn) = 3xn − xn−1. Starting from the
initial values a1 = b1 = c1 = d1 = 1, we obtain a2 = d2 = 2, b2 = c2 = 3, and x2 = 10.
So x3 = 3x2 − x1 = 3 · 10 − 4 = 26, x4 = 3 · 26 − 10 = 68, x5 = 3 · 68 − 26 = 178, and
x6 = 3 · 178 − 68 = 466.
Solution 2. We can attach a sequence of ones and twos to each acceptable sequence by
indicating the number of consequtive equal numbers; these one’s and twos then add up
to the length of the sequence. Interchnaging all ones and zeros in the sequence results
in another acceptabe sequence which in turn yields the same sequence of ones and twos.
Thus any way of writing 12 as a sum of ones and twos, in a specified order, corresponds
to exactly two acceptable sequences of lenghth 12. The number of sums with 12 ones is

one, the number of sums with one 2 and 10 ones is
(

11
10

)
etc. The number of acceptable

sequences is

2 ·
6∑

k=0

(
12 − k

2k

)
= 2 · (1 + 11 + 45 + 84 + 70 + 21 + 1) = 466.

95.3. Let n ≥ 2 and let x1, x2, . . . xn be real numbers satisfying x1 + x2 + . . . + xn ≥ 0
and x2

1 + x2
2 + . . . + x2

n = 1. Let M = max{x1, x2, . . . , xn}. Show that

M ≥ 1√
n(n − 1)

. (1)



34

When does equality hold in (1)?
Solution. Denote by I the set of indices i for which xi ≥ 0, and by J the set of indices

j for which xj < 0. Let us assume M <
1√

n(n − 1)
. Then I �= {1, 2, . . . , n}, since

otherwise we would have |xi| = xi ≤ 1√
n(n − 1)

for every i, and
∑n

i=1 x2
i <

1
n − 1

≤ 1. So

∑
i∈I x2

i < (n− 1) · 1
n(n − 1)

=
1
n

, and
∑

i∈I xi < (n − 1)
1√

n(n − 1)
=

√
n − 1

n
. Because

0 ≤
n∑

i=1

xi =
∑
i∈I

xi −
∑
i∈J

|xi|,

we must have
∑

i∈J |xi| ≤
∑

i∈I xi <

√
n − 1

n
and

∑
i∈J x2

i ≤ (∑i∈J |xi|
)2

<
n − 1

n
. But

then
n∑

i=1

x2
i =

∑
i∈I

x2
i +

∑
i∈J

x2
i <

1
n

+
n − 1

n
= 1,

and we have a contradiction. – To see that equality M =
1√

n(n − 1)
is possible, we choose

xi =
1√

n(n − 1)
, i = 1, 2, . . . , n − 1, and xn = −

√
n − 1

n
. Now

n∑
i=1

xi = (n − 1)
1√

n(n − 1)
−
√

n − 1
n

= 0

and
n∑

i=1

x2
i = (n − 1) · 1

n(n − 1)
+

n − 1
n

= 1.

We still have to show that equality can be obtained only in this case. Assume xi =
1√

n(n − 1)
, for i = 1, . . . , p, xi ≥ 0, for i ≤ q, and xi < 0, kun q + 1 ≤ i ≤ n. As before

we get
q∑

i=1

xi ≤ q√
n(n − 1)

,
n∑

i=q+1

|xi| ≤ q√
n(n − 1)

,

and
n∑

i=q+1

x2
i ≤ q2

n(n − 1)
,

so
n∑

i=1

x2
i ≤ q + q2

n2 − n
.
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It is easy to see that q2+q < n2+n, for n ≥ 2 and q ≤ n−2, but (n−1)2+(n−1) = n2−n.

Consequently, a necessary condition for M =
1√

n(n − 1)
is that the sequence only has one

negative member. But if among the positive members there is at least one smaller than
M we have

n∑
i=1

<
q + q2

n(n − 1)
,

so the conditions of the problem are not satisfied. So there is equality if and only if n − 1

of the numbers xi equal
1√

n(n − 1)
, and the last one is

1 − n√
n(n − 1)

.

95.4. Show that there exist infinitely many mutually non-congruent triangles T , satisfying
(i) The side lengths of T are consecutive integers.
(ii) The area of T is an integer.
Solution. Let n ≥ 3, and let n − 1, n, n + 1 be the side lengths of the triangle. The

semiperimeter of the triangle then equals on
3n

2
. By Heron’s formula, the area of the

triangle is

T =

√
3n

2
·
(

3n

2
− n + 1

)(
3n

2
− n

)(
3n

2
− n − 1

)

=
n

2

√
3
4
(n2 − 4).

If n = 4, then T = 6. So at least one triangle of the kind required exists. We prove that
we always can form new triangles of the required kind from ones already known to exist.

Let n be even, n ≥ 4, and let
3
4
(n2−4) be a square number. Set m = n2−2. Then m > n,

m is even, and m2 − 4 = (m + 2)(m− 2) = n2(n2 − 4). So
3
4
(m2 − 4) = n2 · 3

4
(n2 − 4) is a

square number. Also, T =
m

2

√
3
4
(m2 − 4) is an integer. The argument is complete.

96.1. Show that there exists an integer divisible by 1996 such that the sum of the its
decimal digits is 1996.
Solution. The sum of the digits of 1996 is 25 and the sum of the digits of 2 · 1996 = 3992
is 23. Because 1996 = 78 ·25+46, the number obtained by writing 78 1996’s and two 3992
in succession satisfies the condition of the problem. – As 3 · 1996 = 5998, the sum of the
digits of 5988 is 30, and 1996 = 65 · 30+46, the number 39923992 5988 . . .5988︸ ︷︷ ︸

65 times

also can be

be given as an answer, indeed a better one, as it is much smaller than the first suggestion.
96.2. Determine all real numbers x, such that

xn + x−n

is an integer for all integers n.
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Solution. Set fn(x) = xn + x−n. fn(0) is not defined for any n, so we must have x �= 0.
Since f0(x) = 2 for all x �= 0, we have to find out those x �= 0 for which fn(x) is an integer
foe every n > 0. We note that

xn + x−n = (x + x−1)(xn−1 + x1−n) − (xn−2 + x2−n).

From this we obtain by induction that xn + x−n is an integer for all n > 1 as soon as
x + x−1 is an integer. So x has to satisfy

x + x−1 = m,

where m is an integer. The roots of this quadratic equation are

x =
m

2
±
√

m2

4
− 1,

and they are real, if m �= −1, 0, 1.
96.3. The circle whose diameter is the altitude dropped from the vertex A of the triangle
ABC intersects the sides AB and AC at D and E, respectively (A �= D, A �= E). Show
that the circumcentre of ABC lies on the altitude dropped from the vertex A of the triangle
ADE, or on its extension.

Figure 8.

Solution. (See Figure 8.) Let AF be the altitude of ABC. We may assume that ∠ACB
is sharp. From the right triangles ACF and AFE we obtain ∠AFE = ∠ACF . ∠ADE
and ∠AFE subtend the same arc, so they are equal. Thus ∠ACB = ∠ADE, and the
triangles ABC and AED are similar. Denote by P and Q the circumcenters of ABC
and AED, respectively. Then ∠BAP = ∠EAQ. If AG is the altitude of AED, then
∠DAG = ∠CAF . But this implies ∠BAP = ∠DAG, which means that P is on the
altitude AG.
96.4. The real-valued function f is defined for positive integers, and the positive integer a
satisfies

f(a) = f(1995), f(a + 1) = f(1996), f(a + 2) = f(1997)

f(n + a) =
f(n) − 1
f(n) + 1

for all positive integers n.

(i) Show that f(n + 4a) = f(n) for all positive integers n.
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(ii) Determine the smallest possible a.

Solution. To prove (i), we the formula f(n + a) =
f(n) − 1
f(n) + 1

repeatedly:

f(n + 2a) = f((n + a) + a) =

f(n)− 1
f(n) + 1

− 1

f(n)− 1
f(n) + 1

+ 1
= − 1

f(n)
,

f(n + 4a) = f((n + 2a) + 2a) = − 1

− 1
f(n)

= f(n).

(ii) If a = 1, then f(1) = f(a) = f(1995) = f(3 + 498 · 4a) = f(3) = f(1 + 2a) = − 1
f(1)

.

This clearly is not possible, since f(1) and
1

f(1)
have equal sign. So a �= 1.

If a = 2, we obtain f(2) = f(a) = f(1995) = f(3+249 ·4a) = f(3) = f(a+1) = f(1996) =

f(4 + 249 · 4a) = f(4) = f(2 + a) =
f(2)− 1
f(2) + 1

, or f(2)2 + f(2) = f(2) − 1. This quadratic

equation in f(2) has no real solutions. So a �= 2.

If a = 3, we try to construct f by choosing f(1), f(2), and f(3) arbitrarily and by

computing the other values of f by the recursion formula f(n + 3) =
f(n) − 1
f(n) + 1

. We have

to check that f defined in this way satisfies the conditions of the problem.

The condition

f(n + a) = f(n + 3) =
f(n) − 1
f(n) + 1

is valid because of the construction. Further, by (i),

f(n + 12) = f(n + 4a) = f(n),

which implies
f(a) = f(3) = f(3 + 166 · 12) = f(1995),

f(a + 1) = f(4) = f(4 + 166 · 12) = f(1996),

f(a + 2) = f(5) = f(5 + 166 · 12) = f(1997)

as required.

We remark that the choice f(n) = −1 makes f(n + 3) undefined, the choice f(n) = 0
makes f(n + 3) = −1 and f(n + 6) is undefined, and f(n) = 1 makes f(n + 3) = 0 so
f(n + 9) is undefined. In the choice of f(1), f(2), and f(3) we have to avoid −1, 0, 1.

In conclusion, we see that a = 3 is the smallest possible value for a.



38

97.1. Let A be a set of seven positive numbers. Determine the maximal number of triples
(x, y, z) of elements of A satisfying x < y and x + y = z.
Solution. Let 0 < a1 < a2 < . . . < a7 be the elements of the set A. If (ai, aj , ak) is a
triple of the kind required in the problem, then ai < aj < ai + aj = ak. There are at most
k − 1 pairs (ai, aj) such that ai + aj = ak. The number of pairs satisfying ai < aj is at

most
⌊

k − 1
2

⌋
. The total number of pairs is at most

7∑
k=3

⌊
k − 1

2

⌋
= 1 + 1 + 2 + 2 + 3 = 9.

The value 9 can be reached, if A = {1, 2, . . . , 7}. In this case the triples (1, 2, 3), (1, 3, 4),
(1, 4, 5), (1, 5, 6), (1, 6, 7), (2, 3, 5), (2, 4, 6), (2, 5, 7), and (3, 4, 7) satisfy the conditions
of the problem.
97.2. Let ABCD be a convex quadrilateral. We assume that there exists a point P inside
the quadrilateral such that the areas of the triangles ABP , BCP , CDP , and DAP are
equal. Show that at least one of the diagonals of the quadrilateral bisects the other diagonal.

Figure 9.

Solution. (See Figure 9.) We first assume that P does not lie on the diagonal AC and the
line BP meets the diagonal AC at M . Let S and T be the feet of the perpendiculars from
A and C on the line BP . The triangles APB and CBP have equal area. Thus AS = CT .
If S �= T , then the right trianges ASM and CTM are congruent, and AM = CM . If, on
the other hand, S = T , the AC⊥PB and S = M = T , and again AM = CM . In both
cases M is the midpoint of the diagonal AC. We prove exactly in the same way that the
line DP meets AC at the midpoint of AC, i.e. at M . So B, M , and P , and also D, M ,
and P are collinear. So M is on the line DB, which means that BD divides the diagonal
AC in two equal parts.
We then assume that P lies on the diagonal AC. Then P is the midpoint of AC. If P is
not on the diagonal BD, we argue as before that AC divides BD in two equal parts. If P
lies also on the diagonal BD, it has to be the common midpoint of the diagonals.
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97.3. Let A, B, C, and D be four different points in the plane. Three of the line segments
AB, AC, AD, BC, BD, and CD have length a. The other three have length b, where

b > a. Determine all possible values of the quotient
b

a
.

Solution. If the three segments of length a share a common endpoint, say A, then the
other three points are on a circle of radius a, centered at A, and they are the vertices of
an equilateral triangle of side length b. But this means that A is the center of the triangle
BCD, and

b

a
=

b

2
3

√
3

2
b

=
√

3.

Assume then that of the segments emanating from A at least one has lenght a and at least
one has length b. We may assume AB = a and AD = b. If only one segment of length a
would emanate from each of the four poits, then the number of segments of length a would
be two, as every segment is counted twice when we count the emanating segments. So we
may assume that AC has length a, too. If BC = a, then ABC would be an equilateral
triangle, and the distance of D from each of its vertices would be b. This is not possible,
since b > a. So BC = b. Of the segments CD and BD one has length a. We may assume
DC = a. The segments DC and AB are either on one side of thye line AC or on opposite
sides of it. In the latter case, ABCD is a parallelogram with a pair of sides of length a
and a pair of sides of length b, and its diagonals have lengths a and b. This is not possible,
due to the fact that the sum of the squares of the diagonals of the parallelogram, a2 + b2,
would be equal to the sum of the squares of its sides, i.e. 2a2 + 2b2. This means that we
may assume that BACD is a convex quadrilateral. Let ∠ABC = α and ∠ADB = β.
From isosceles triangles we obtain for instance ∠CBD = β, and from the triangle ABD in
particular 2α + 2β + β = π as well as ∠CDA = α, ∠DCB = 1

2 (π − β), ∠CAD = α. The
triangle ADC thus yields α + α + α + 1

2
(π − β) = π. From this we solve α = 1

5
π = 36◦.

The sine theorem applied to ABC gives

b

a
=

sin 108◦

sin 36◦
=

sin 72◦

sin 36◦
= 2 cos 36◦ =

√
5 + 1
2

.

(In fact, a is the side of a regular pentagon, and b is its diagonal.) – Another way of finding

the ratio
b

a
is to consider the trapezium CDBA, with CD‖AB; if E is the orthogonal

projection of B on the segment CD, then CE = b − 1
2
(b − a) =

1
2
(b + a). The right

triangles BCE and DCE yield CE2 = b2 −
(

b + a

2

)2

= a2 −
(

b − a

2

)2

, which can be

written as b2 − ab − a2 = 0. From this we solve
b

a
=

√
5 + 1
2

.

97.4. Let f be a function defined in the set {0, 1, 2, . . . } of non-negative integers, satis-
fying f(2x) = 2f(x), f(4x + 1) = 4f(x) + 3, and f(4x− 1) = 2f(2x− 1)− 1. Show that f
is an injection, i.e. if f(x) = f(y), then x = y.



40

Solution. If x is even, then f(x) is even, and if x is odd, then f(x) is odd. Moreover,
if x ≡ 1 mod 4, then f(x) ≡ 3 mod 4, and if x ≡ 3 mod 4, then f(x) ≡ 1 mod 4.
Clearly f(0) = 0, f(1) = 3, f(2) = 6, and f(3) = 5. So at least f restricted to the set
{0, 1, 2, 3} ia an injection. We prove that f(x) = f(y) =⇒ x = y, for x, y < k implies
f(x) = f(y) =⇒ x = y, for x, y < 2k. So assume x and y are smaller than 2k and
f(x) = f(y). If f(x) is even, then x = 2t, y = 2u, and 2f(t) = 2f(u). As t and u are
less than k, we have t = u, and x = y. Assume f(x) ≡ 1 mod 4. Then x ≡ 3 mod 4;
x = 4u−1, and f(x) = 2f(2u−1)−1. Also y = 4t−1 and f(y) = 2f(2t−1)−1. Moreover,

2u − 1 <
1
2
(4u − 1) < k and 2t − 1 < k, so 2u − 1 = 2t − 1, u = t, and x = y. If, finally,

f(x) ≡ 3 mod 4, then x = 4u + 1, y = 4t + 1, u < k, t < k, 4f(u) + 3 = 4f(t) + 3, u = t,
and x = y. Since for all x and y there is an n such that the larger one of the numbers x
and y is < 2n · 3, the induction argument above shows that f(x) = f(y) ⇒ x = y.
98.1. Determine all functions f defined in the set of rational numbers and taking their
values in the same set such that the equation f(x + y) + f(x − y) = 2f(x) + 2f(y) holds
for all rational numbers x and y.
Solution. Insert x = y = 0 in the equation to obtain 2f(0) = 4f(0), which implies
f(0) = 0. Setting x = 0, one obtains f(y)+f(−y) = 2f(y) of f(−y) = f(y). Then assume
y = nx, where n is a positive integer. We obtain

f((n + 1)x) = 2f(x) + 2f(nx)− f((n − 1)x).

In particular, f(2x) = 2f(x)+2f(x)−f(0) = 4f(x) and f(3x) = 2f(x)+2f(2x)−f(x) =
9f(x). We prove f(nx) = n2f(x) for all positive integers n. This is true for n = 1. Assume
f(kx) = k2f(x) for k ≤ n. Then

f((n + 1)x) = 2f(x) + 2f(nx) − f((n − 1)x)
= (2 + 2n2 − (n − 1)2)f(x) = (n + 1)2f(x),

and we are done. If x = 1/q, where q is a positive integer, f(1) = f(qx) = q2f(x). So
f(1/q) = f(1)/q2. This again implies f(p/q) = p2f(1/q) = (p/q)2f(1). We have shown
that there is a rational number a = f(1) such that f(x) = ax2 for all positive rational
numbers x. But since f is an even function, f(x) = ax2 for all rational x. We still have to
check that for every rational a, f(x) = ax2 satisfies the conditions of the problem. In fact,
if f(x) = ax2, then f(x+y)+f(x−y) = a(x+y)2+a(x−y)2 = 2ax2+2ay2 = 2f(x)+2f(y).
So the required functions are all functions f(x) = ax2 where a is any rational number.
98.2. Let C1 and C2 be two circles intersecting at A and B. Let S and T be the centres of
C1 and C2, respectively. Let P be a point on the segment AB such that |AP | �= |BP | and
P �= A, P �= B. We draw a line perpendicular to SP through P and denote by C and D
the points at which this line intersects C1. We likewise draw a line perpendicular to TP
through P and denote by E and F the points at which this line intersects C2. Show that
C, D, E, and F are the vertices of a rectangle.
Solution. (See Figure 10.) The power of the point P with respect to the circles C1 and
C2 is PA · PB = PC · PD = PE · PF . Since SP is perpendicular to the chord CD, P
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Figure 10.

has to be the midpoint of CD. So PC = PD. In a similar manner, we obtain PE = PF .
Alltogether PC = PD = PE = PF =

√
PA · PB. Consequently the points C, D, E, and

F all lie on a circle withe center P , and CD and EF as diameters. By Thales’ theorem,
the angles ∠ECF , ∠CFD etc. are right angles. So CDEF is a rectangle.
98.3. (a) For which positive numbers n does there exist a sequence x1, x2, . . . , xn, which
contains each of the numbers 1, 2, . . . , n exactly once and for which x1 + x2 + · · ·+ xk is
divisible by k for each k = 1, 2, . . . , n?
(b) Does there exist an infinite sequence x1, x2, x3, . . ., which contains every positive
integer exactly once and such that x1 + x2 + · · · + xk is divisible by k for every positive
integer k?
Solution. (a) We assume that x1, . . . , xn is the sequence required in the problem. Then

x1+x2+· · ·+xn =
n(n + 1)

2
. This sum should be divisible by n. If n is odd, this is possible,

since
(n + 1)

2
is an integer. If, on the other hand, n = 2m, then

n(n + 1)
2

= m(2m + 1) =

2m2 + m ≡ m mod 2m. So even n’s are ruled out. Assume n = 2m + 1 > 1. We require
that n − 1 = 2m divides evenly the number x1 + · · · + xn−1. Since x1 + · · · + xn−1 =
(m + 1)(2m + 1)− xn ≡ m + 1 − xn mod 2m, and 1 ≤ xn ≤ n, we must have xn = m + 1.
We also require that n − 2 = 2m − 1 divides evenly the number x1 + · · · + xn−2. Now
x1 + · · · + xn−2 = (m + 1)(2m + 1) − xn − xn−1 ≡ m + 1 − xn−1 mod (2m − 1) and
−m ≤ m + 1 − xn−1 ≤ m, we have xn−1 = m + 1 mod (2m − 1). If n > 3 or m ≥ 1, we
must have xn−1 = m + 1 = xn, which is not allowed. So the only possibilities are n = 1 or
n = 3. If n = 1, x1 = 1 is a possible sequence. If n = 3, we must have x3 = 2. x1 and x2

are 1 and 3 in any order.
(b) Let x1 = 1. We define the sequence by a recursion formula. Assume that
x1, x2, . . . , xn−1 have been chosen and that the sum of these numbers is A. Let m be the
smallest integer not yet chosen into the sequence. If xn+1 is chosen to be m, there will be
two restrictions on xn:

A + xn ≡ 0 mod n and A + xn + m ≡ 0 mod n + 1.

Since n and n + 1 are relatively prime, there exists, by the Chinese Remainder Theorem,
a y such that y ≡ −A mod n and y ≡ −A − m mod n + 1. If one adds a suitably large
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multiple of n(n + 1) to y, one obtains a number not yet in the sequence. So the sequence
always can be extended by two numbers, and eventually every positive integer will be
included.
98.4. Let n be a positive integer. Count the number of numbers k ∈ {0, 1, 2, . . . , n} such

that
(

n

k

)
is odd. Show that this number is a power of two, i.e. of the form 2p for some

nonnegative integer p.

Solution. The number of odd binomial coefficients
(

n

k

)
equals the number of ones on

the n:th line of the Pascal Triangle mod 2:

1
1 1

1 0 1
1 1 1 1

1 0 0 0 1
1 1 0 0 1 1

1 0 1 0 1 0 1

(We count the lines so that the uppermost line is line 0). We notice that line 1 has two
copies of line 0, lines 2 and 3 contain two copies of lines 1 and 2, etc.

The fundamental property
(

n + 1
p

)
=
(

n

p − 1

)
+
(

n

p

)
of the Pascal Triangle implies that

if all numbers on line k are ≡ 1 mod 2, then on line k+1 exactly the first and last numbers
are ≡ 1 mod 2. If, say on line k exactly the first and last numbers are ≡ 1 mod 2, then
the lines k, k + 1, . . . , 2k− 1 are formed by two copies of lines 0, 1, . . . k− 1, separated by
zeroes. As line 0 has number 1 and line 1 is formed by two ones, the lines 2 and three are
formed by two copies of lines 0 and 1, etc. By induction we infer that for every k, the line
2k − 1 is forned of ones only – it has two copies of line 2k−1 − 1, and the line 0 = 20 − 1 is
a one. The line 2k has ones in the end and zeroes in between. Now let Nn be the number
of ones on line n = 2k + m, m < 2k. Then N1 = 2 and Nn = 2Nm. So Nn always is a
power of two. To be more precise, we show that Nn = 2e(n), where e(n) is the number of
ones in the binary representation of n. The formula is true for n = 0, as N0 = 1 = 2e(0).
Also, if m < 2k, e(2k + m) = e(m) + 1. On the other hand, if n = 2k + m, m < 2k then
Nn = 2Nm = 2 · 2e(m) = 2e(m)+1 = 2e(n).
99.1. The function f is defined for non-negative integers and satisfies the condition

f(n) =
{

f(f(n + 11)), if n ≤ 1999
n − 5, if n > 1999.

Find all solutions of the equation f(n) = 1999.
Solution. If n ≥ 2005, then f(n) = n − 5 ≥ 2000, and the equation f(n) = 1999 has no
solutions. Let 1 ≤ k ≤ 4. Then

2000 − k = f(2005 − k) = f(f(2010− k))
= f(1999− k) = f(f(2004− k)) = f(1993− k).
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Let k = 1. We obtain three solutions 1999 = f(2004) = f(1998) = f(1992). More-
over, 1995 = f(2000) = f(f(2005)) = f(1994) and f(1993) = f(f(2004)) = f(1999) =
f(f(2010)) = f(2005) = 2000. So we have shown that 2000 − k = f(1999 − k), for
k = 0, 1, 2, 3, 4, 5, and 2000 − k = f(1993 − k) for k = 0, 1, 2, 3, 4. We now show
by downwards induction that f(6n + 1 − k) = 2000 − k for n ≤ 333 and 0 ≤ k ≤ 5.
This has already been proved for n = 333 and n = 332. We assume that the claim is
true for n = m + 2 and n = m + 1. Then f(6m + 1 − k) = f(f(6m + 12 − k)) =
f(f(6(m+2)+1−(k+1)) = f(2000−k−1) = f(1999−k) = 2000−k for k = 0, 1, 2, 3, 4, and
f(6m+1−5) = f(6m−4) = f(f(6m+7)) = f(f(6(m+1)+1)) = f(2000) = 1995 = 2000−5.
So the claim is true for n = m. Summing up, 1999 = 2000 − 1 = f(6n), if and only if
n = 1, 2, . . . , 334.
99.2. Consider 7-gons inscribed in a circle such that all sides of the 7-gon are of different
length. Determine the maximal number of 120◦ angles in this kind of a 7-gon.
Solution. It is easy to give examples of heptagons ABCDEFG inscribed in a circle with
all sides unequal and two angles equal to 120◦. These angles cannot lie on adjacent vertices
of the heptagon. In fact, if ∠ABC = ∠BCD = 120◦, and arc BC equals b◦, then arcs AB
and CD both are 120◦ − b◦ (compute angles in isosceles triangles with center of the circle
as the to vertex), and AB = CD, contrary to the assumption. So if the heptagon has three
angles of 120◦, their vertices are, say A, C, and E. Then each of the arcs GAB, BCD,
DEF are 360◦−240◦ = 120◦. The arcs are disjoint, so they cover the whole circumference.
The F has to coincide with G, and the heptagon degenerates to a hexagon. There can be
at most two 120◦ angles.
99.3. The infinite integer plane Z × Z = Z

2 consists of all number pairs (x, y), where x
and y are integers. Let a and b be non-negative integers. We call any move from a point
(x, y) to any of the points (x± a, y ± b) or (x± b, y ± a) a (a, b)-knight move. Determine
all numbers a and b, for which it is possible to reach all points of the integer plane from
an arbitrary starting point using only (a, b)-knight moves.
Solution. If the greatest common divisor of a and b is d, only points whose coordinates
are multiples of d can be reached by a sequence of (a, b)-knight moves starting from the
origin. So d = 1 is a necessary condition for the possibility of reaching every point in
the integer plane. In any (a, b)-knight move, x + y either stays constant or increases or
diminishes by a + b. If a + b is even, then all points which can be reached from the origin
have an even coordinate sum. So a + b has to be odd. We now show that if d = 1 and
a + b is odd, then all points can be reached. We may assume a ≥ 1 and b ≥ 1, for if
ab = 0, d = 1 is possible only if one of the numbers a, b is 0 and the other one 1. In
this case clearly all points can be reached. Since d = 1, there exist positive numbers
r and s such that either ra − sb = 1 or sb − ra = 1. Assume ra − sb = 1. Make r
moves (x, y) → (x + a, y + b) and r moves (x, y) → (x + a, y − b) to travel from point
(x, y) to point (x + 2ra, y). After this, make s moves (x, y) → (x − b, a) and s moves
(x, y) → (x−b, −a) to arrive at point (x+2ra−2sb, y) = (x+2, y). In a similar manner we
construct sequences of moves carrying us from point (x, y) to points (x− 2, y), (x, y + 2),
and (x, y − 2). This means that we can reach all points with both coordinates even from
the origin. Exactly one of the numbers a and b is odd. We may assume a = 2k+1, b = 2m.
A move (x, y) → (x + a, y + b) = (x + 1 + 2k, y + 2m), followed by k sequences of moves
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(x, y) → (x − 2, y) and m sequences of moves (x, y) → (x, y − 2) takes us to the point
(x + 1, y). In a similar manner we reach the points (x − 1, y) and (x, y ± 1) from (x, y).
So all points can be reached from the origin. – If sb − ra = 1, the argument is similar.
99.4. Let a1, a2, . . . , an be positive real numbers and n ≥ 1. Show that

n

(
1
a1

+ · · ·+ 1
an

)

≥
(

1
1 + a1

+ · · ·+ 1
1 + an

)(
n +

1
a1

+ · · · + 1
an

)
.

When does equality hold?
Solution. The inequality of the problem can be written as

1
1 + a1

+ · · · + 1
1 + an

≤
n

(
1
a1

+ · · · + 1
an

)
n +

1
a1

+ · · ·+ 1
an

.

A small manipulation of the right hand side brings the inequality to the equivalent form
1

1
a−1
1

+ 1
+ · · · + 1

1
a−1

n

+ 1
≤ n

1
a−1
1 + · · ·+ a−1

n

n

+ 1
. (1)

Consider the function
f(x) =

1
1
x

+ 1
=

x

1 + x
.

We see that it is concave, i.e.

tf(x) + (1 − t)f(y) < f(tx + (1 − t)y)

for all t ∈ (0, 1). In fact, the inequality

t
x

1 + x
+ (1 − t)

y

1 + y
<

tx + (1 − t)y
1 + tx + (1 − t)y

can be written as
t2(x − y)2 < t(x − y)2,

and because 0 < t < 1, it is true. [Another standard way to see this is to compute

f ′(x) =
1

(1 + x)2
, f ′′(x) = − 2

(1 + x)3
< 0.

A function with a positive second derivative is concave.] For any concave function f , the
inequality

1
n

(f(x1) + f(x2) + · · ·+ f(xn)) ≤ f

(
x1 + · · ·+ xn

n

)
holds, with equality only for x1 = x2 = . . . = xn. So (1) is true, and equality holds only if
all ai’s are equal.
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00.1. In how many ways can the number 2000 be written as a sum of three positive, not
necessarily different integers? (Sums like 1 + 2 + 3 and 3 + 1 + 2 etc. are the same.)
Solution. Since 3 is not a factor of 2000, there has to be at least two different numbers
among any three summing up to 2000. Denote by x the number of such sums with three
different summands and by y the number of sums with two different summands. Consider
3999 boxes consequtively numbered fron 1 to 3999 such that all boxes labelled by an odd
number contain a red ball. Every way to put two blue balls in the even-numbered boxes

produces a partition of 2000 in three summands. There are
(

1999
2

)
= 999 · 1999 ways

to place the blue balls. But htere are 3! = 6 different placements, which produce the

same partition of 2000 into three different summands, and
3!
2

= 3 different placements,
which produce the same partition of 2000 into summands two which are equal. Thus
6x+3y = 1999·999. But y = 999, because the number appering twice in the partition can be
any of the numbers 1, 2, . . . , 999. This leads to x = 998·333, so x+y = 1001·333 = 333333.
00.2. The persons P1, P1, . . . , Pn−1, Pn sit around a table, in this order, and each one of
them has a number of coins. In the start, P1 has one coin more than P2, P2 has one coin
more than P3, etc., up to Pn−1 who has one coin more than Pn. Now P1 gives one coin
to P2, who in turn gives two coins to P3 etc., up to Pn who gives n coins to P1. Now the
process continues in the same way: P1 gives n + 1 coins to P2, P2 gives n + 2 coins to P3;
in this way the transactions go on until someone has not enough coins, i.e. a person no
more can give away one coin more than he just received. At the moment when the process
comes to an end in this manner, it turns out that there are to neighbours at the table such
that one of them has exactly five times as many coins as the other. Determine the number
of persons and the number of coins circulating around the table.
Solution. Assume that Pn has m coins in the start. Then Pn−1 has m + 1 coins, . . .
and P1 has m + n− 1 coins. In every move a player receives k coins and gives k + 1 coins
away, so her net loss is one coin. After the first round, when Pn has given n coins to P1,
Pn has m − 1 coins, Pn−1 has m coins etc., after two rounds Pn has m − 2 coins, Pn−1

has m− 1 coins etc. This can go on during m rounds, after which Pn has no money, Pn−1

has one coin etc. On round m + 1 each player still in possession of money can receive and
give away coins as before. The penniless Pn can no more give away coins according to the
rule. She receives n(m + 1) − 1 coins from Pn−1, but is unable to give n(m + 1) coins to
P1. So when the game ends, Pn−1 has no coins and P1 has n − 2 coins. The only pair of
neighbours such that one has 5 times as many coins as the other can be (P1, Pn). Because
n − 2 < n(m + 1) − 1, this would mean 5(n − 2) = n(m + 1) − 1 or n(4 − m) = 9. Since
n > 1, the possibilities are n = 3, m = 1 or n = 9, m = 3. Both are indeed possible. In
the first case the number of coins is 3 + 2 + 1 = 6, in the second 11 + 10 + · · · + 3 = 63.
00.3. In the triangle ABC, the bisector of angle B meets AC at D and the bisector of
angle C meets AB at E. The bisectors meet each other at O. Furthermore, OD = OE.
Prove that either ABC is isosceles or ∠BAC = 60◦.
Solution. (See Figure 11.) Consider the triangles AOE and AOD. They have two equal
pairs of sides and the angles facing one of these pairs are equal. Then either AOE and
AOD are congruent or ∠AEO = 180◦ − ∠ADO. In the first case, ∠BEO = ∠CDO, and
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Figure 11.

the triangles EBO and DCO are congruent. Then AB = AC, and ABC is isosceles. In
the second case, denote the angles of ABC by 2α, 2β, and 2γ, and the angle AEO by δ.
By the theorem on the adjacent angle of an angle of a triangle, ∠BOE = ∠DOC = β + γ,
δ = 2β + γ, and 180◦ − δ = β + 2γ. Adding these equations yields 3(β + γ) = 180◦ eli
β + γ = 60◦. Combining this with 2(α + β + γ) = 180◦, we obtain 2α = 60◦.
00.4. The real-valued function f is defined for 0 ≤ x ≤ 1, f(0) = 0, f(1) = 1, and

1
2
≤ f(z) − f(y)

f(y) − f(x)
≤ 2

for all 0 ≤ x < y < z ≤ 1 with z − y = y − x. Prove that

1
7
≤ f

(
1
3

)
≤ 4

7
.

Solution. We set f

(
1
3

)
= a and f

(
2
3

)
= b. Applying the inequality of the problem for

x =
1
3
, y =

2
3

and z = 1, as well as for x = 0, y =
1
3
, and z =

2
3
, we obtain

1
2
≤ 1 − b

b − a
≤ 2,

1
2
≤ b − a

a
≤ 2

If a < 0, we would have b − a < 0 and b < 0. In addition, we would have 1 − b < 0 or
b > 1. A similar contradiction would be implied by the assumption b − a < 0. So a > 0
and b − a > 0, so

1
3

(
2
3
a +

1
3

)
≤ a ≤ 2

3

(
1
3
a +

2
3

)
or a ≤ 2b − 2a, b − a ≤ 2a, b − a ≤ 2 − 2b, and 1 − b ≤ 2b − 2a. Of these inequalities

the first and third imply 3a ≤ 2b and 3b ≤ 2 + a. Eliminate b to obtain 3a ≤ 4
3

+
2a

3
,

a ≤ 4
7
. In a corresponding manner, the second and fourth inequality imply 1 + 2a ≤ 3b
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and b ≤ 3a, from which 1 ≤ 7a or
1
7
≤ a follows. [The bounds can be improved. In fact

the sharp lower and upper bounds for a are known to be
4
27

and
76
135

.]

01.1. Let A be a finite collection of squares in the coordinate plane such that the vertices
of all squares that belong to A are (m, n), (m + 1, n), (m, n + 1), and (m + 1, n + 1) for
some integers m and n. Show that there exists a subcollection B of A such that B contains
at least 25 % of the squares in A, but no two of the squares in B have a common vertex.
Solution. Divide the plane into two sets by painting the strips of squares parallel to the
y axis alternately red and green. Denote the sets of red and green squares by R and G,
respectively. Of the sets A ∩ R and A ∩ G at least one contains at least one half of the
squares in A. Denote this set by A1. Next partition the strips of squares which contain
squares of A1 into two sets E and F so that each set contains every second square of A1

on each strip. Now neither of the dets E and F has a common point with a square in the
same set. On the other hand, at least one of the sets E ∩A1, F ∩A1 contains at least one
half of the squares in A1 and thus at least one quarter of the sets in A. This set is good
for the required set B.
01.2. Let f be a bounded real function defined for all real numbers and satisfying for all
real numbers x the condition

f

(
x +

1
3

)
+ f

(
x +

1
2

)
= f(x) + f

(
x +

5
6

)
.

Show that f is periodic. (A function f is bounded, if there exists a number L such that
|f(x)| < L for all real numbers x. A function f is periodic, if there exists a positive number
k such that f(x + k) = f(x) for all real numbers x.)
Solution. Let g(6x) = f(x). Then g is bounded, and

g(t + 2) = f

(
t

6
+

1
3

)
, g(t + 3) = f

(
t

6
+

1
2

)
,

g(t + 5) = f

(
t

6
+

5
6

)
, g(t + 2) + g(t + 3) = g(t) + g(t + 5),

g(t + 5) − g(t + 3) = g(t + 2) − g(t)

for all real numbers t. But then

g(t + 12) − g(6)
= g(t + 12) − g(t + 10) + g(t + 10) − g(t + 8) + g(t + 8) − g(t + 6)

= g(t + 9) − g(t + 7) + g(t + 7) − g(t + 5) + g(t + 5) − g(t + 3)
= g(t + 6) − g(t + 4) + g(t + 4) − g(t + 2) + g(t + 2) − g(t)

= g(t + 6) − g(t).

By induction, then g(t + 6n)− g(t) = n(g(t + 6)− g(0)) for all positive integers n. Unless
g(t + 6)− g(t) = 0 for all real t, g cannot be bounded. So g has to be periodic with 6 as a
period, whence f is periodic, with 1 as a period.
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01.3. Determine the number of real roots of the equation

x8 − x7 + 2x6 − 2x5 + 3x4 − 3x3 + 4x2 − 4x +
5
2

= 0.

Solution. Write

x8 − x7 + 2x6 − 2x5 + 3x4 − 3x3 + 4x2 − 4x +
5
2

= x(x − 1)(x6 + 2x4 + 3x2 + 4) +
5
2
.

If x(x − 1) ≥ 0, i.e. x ≤ 0 or x ≥ 1, the equation has no roots. If 0 < x < 1, then

0 > x(x−1) =
(

x − 1
2

)2

− 1
4
≥ −1

4
and x6 +2x4 +3x+4 < 1+2+3+4 = 10. The value

of the left-hand side of the equation now is larger than −1
4
· 10 +

5
2

= 0. The equation has

no roots in the interval (0, 1) either.
01.4. Let ABCDEF be a convex hexagon, in which each of the diagonals AD, BE, and
CF divides the hexagon in two quadrilaterals of equal area. Show that AD, BE, and CF
are concurrent.

Figure 12.

Solution. (See Figure 12.) Denote the area of a figure by | · |. Let AD and BE intersect
at P , AD and CF at Q, and BE and CF at R. Assume that P , Q, and R are different.
We may assume that P lies between B and R, and Q lies between C and R. Both |ABP |
and |DEP | differ from

1
2
|ABCDEF | by |BCDP |. Thus ABP and DEP have equal area.

Since ∠APB = ∠DPE, we have AP ·BP = DP ·EP = (DQ+QP )(ER+RP ). Likewise
CQ · DQ = (AP + PQ)(FR + RQ) and ER · FR = (CQ + QR)(BP + PR). When
we multiply the three previous equalities, we obtain AP · BP · CQ · DQ · ER · FR =
DQ · ER · AP · FR · CQ · BP+ positive terms containing PQ, QR, and PR. This is a
contradiction. So P , Q and R must coincide.
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Figure 13.

02.1. The trapezium ABCD, where AB and CD are parallel and AD < CD, is inscribed
in the circle c. Let DP be a chord of the circle, parallel to AC. Assume that the tangent
to c at D meets the line AB at E and that PB and DC meet at Q. Show that EQ = AC.
Solution. (See Figure 13.) since AD < CD, ∠PDC = ∠DCA < ∠DAC. This implies
that arc CP is smaller than arc CD, and P lies on that arc CD which does not include
A and B. We show that the triangles ADE and CBQ are congruent. As a trapezium
inscribed in a circle, ABCD is isosceles (because AB‖CD, ∠BAC = ∠DCA, hence BC =
AD). Because DP‖AC, ∠PDC = ∠CAB. But ∠EDA = ∠CAB (angles subtending
equal arcs) and ∠PBC = ∠PDC (by the same argument). So ∠EDA = ∠QBC. Because
ABCD is an inscribed quadrilateral, ∠EAD = 180◦ − ∠DAB = ∠DCB. So ∠EAD =
∠QCB. The triangles ADE and CBQ are congruent (asa). But then EA = QC. As, in
addition, EA‖QC, EACQ is a parallelogram. And so AC = EQ, as opposite sides of a
parallelogram.
02.2. In two bowls there are in total N balls, numbered from 1 to N . One ball is moved
from one of the bowls to the other. The average of the numbers in the bowls is increased
in both of the bowls by the same amount, x. Determine the largest possible value of x.
Solution. Consider the situation before the ball is moved from urn one to urn two. Let
the number of balls in urn one be n, and let the sum of numbers in the balls in that urn
be a. The number of balls in urn two is m and the sum of numbers b. If q is the number
written in the ball which was moved, the conditions of the problem imply⎧⎪⎨

⎪⎩
a − q

n − 1
=

a

n
+ x,

b + q

m + 1
=

b

m
+ x

or {
a = nq + n(n − 1)x
b = mq − m(m + 1)x.

Because n + m = N and a + b =
1
2
N(N + 1), we obtain

1
2
N(N + 1) = Nq + x(n2 − m2 − N) = Nq + xN(n − m − 1)
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and q = 1
2 (N+1)−x(n−m−1), b =

1
2
m(N+1)−xmn. But b ≥ 1+2+· · ·+m =

1
2
m(m+1).

So
1
2
(N + 1) − xn =

1
2
(m + n + 1) − xn ≥ 1

2
(m + 1) or

n

2
− xn ≥ 0. Hence x ≤ 1

2
. The

inequality is sharp or x =
1
2
, when the nubers in the balls in urn one are m + 1, m + 2,

. . . , N , the numbers in urn two are 1, 2, . . . , m, and q = m + 1.
02.3. Let a1, a2, . . . , an, and b1, b2, . . . , bn be real numbers, and let a1, a2, . . . , an be
all different.. Show that if all the products

(ai + b1)(ai + b2) · · · (ai + bn),

i = 1, 2, . . . , n, are equal, then the products

(a1 + bj)(a2 + bj) · · · (an + bj),

j = 1, 2, . . . , n, are equal, too.
Solution. Let P (x) = (x+ b1)(x+ b2) · · · (x+ bn). Let P (a1) = P (a2) = . . . = P (an) = d.
Thus a1, a2, . . . , an are the roots of the n:th degree polynomial equation P (x) − d = 0.
Then P (x)− d = c(x− a1)(x− a2) · · · (x− an). Clearly the n:th degree terms of P (x) and
P (x) − d are equal. So c = 1. But P (−bj) = 0 for each bj . Thus for every j,

−d = (−bj − a1)(−bj − a2) · · · (−bj − an)
= (−1)n(a1 + bj)(a2 + bj) · · · (an + bj),

and the claim follows.
02.4. Eva, Per and Anna play with their pocket calculators. They choose different integers
and check, whether or not they are divisible by 11. They only look at nine-digit numbers
consisting of all the digits 1, 2, . . . , 9. Anna claims that the probability of such a number to
be a multiple of 11 is exactly 1/11. Eva has a different opinion: she thinks the probability
is less than 1/11. Per thinks the probability is more than 1/11. Who is correct?
Solution. We write the numbers in consideration, n = a0 +10a1 +102a2 + · · ·+ 108a8, in
the form

a0 + (11 − 1)a1 + (99 + 1)a2 + (1001 − 1)a3

+(9999 + 1)a4 + (100001 − 1)a5 + (999999 + 1)a6

+(10000001 − 1)a7 + (99999999 + 1)a8

= (a0 − a1 + a2 − a3 + a4 − a5 + a6 − a7 + a8) + 11k

= (a0 + a1 + · · ·+ a8) − 2(a1 + a3 + a5 + a7) + 11k

= 44 + 1 + 11k − 2(a1 + a3 + a5 + a7).

So n is divisible by 11 if and only if 2(a1 + a3 + a5 + a7) − 1 is divisible by 11. Let
s = a1 + a3 + a5 + a7. Then 1 + 2 + 3 + 4 = 10 ≤ s ≤ 6 + 7 + 8 + 9 = 30 and
19 ≤ 2s− 1 ≤ 59. The only multiples of 11 in the desired interval are 33 and 55, so s = 17
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or s = 28. If s = 17, the smallest number in the set A = {a1, a3, a5, a7} is either 1 or 2
(3+4+5+6 = 18). Checking the cases, we see that there are 9 possible sets A: {2, 4, 5, 6},
{2, 3, 5, 7}, {2, 3, 4, 8}, {1, 4, 5, 7}, {1, 3, 6, 7}, {1, 3, 5, 8}, {1, 3, 4, 9}, {1, 2, 6, 8}, and
{1, 2, 5, 9}. If s = 28, the largest number in A is 9 (5 + 6 + 7 + 8 = 26) and the second
largest 8 (5 + 6 + 7 + 9 = 27). The only possible A’s are {4, 7, 8, 9} and {5, 6, 8, 9}. The

number of different ways to choose the set A is
(

9
4

)
=

9 · 8 · 7 · 6
2 · 3 · 4 = 126. Of these, the

number of choices leading to a number which is a multiple of 11 is 9 +2 = 11. This means

that the probability of picking a number which is divisible by 11 is
11
126

<
11
121

=
1
11

. So
Eva’s opinion is correct.
03.1. Stones are placed on the squares of a chessboard having 10 rows and 14 columns.
There is an odd number of stones on each row and each column. The squares are coloured
black and white in the usual fashion. Show that the number of stones on black squares is
even. Note that there can be more than one stone on a square.
Solution. Changing the order of rows or columns does not influence the number of stones
on a row, on a column or on black squares. Thus we can order the rows and columns in
such a way that the 5 × 7 rectangles in the upper left and lower right corner are black
and the other two 5 × 7 rectangles are white. If the number of stones on black squares
would be odd, then one of the black rectangles would have an odd number of stones while
the number of stones on the other would be even. Since the number of stones is even,
one of the white rectangles would have an odd number of stones and the other an even
number. But this would imply either a set of five rows or a set of seven columns with an
even number of stones. But this is not possible, because every row and column has an odd
number of stones. So the number of stones on black squares has to be even.
03.2. Find all triples of integers (x, y, z) satisfying

x3 + y3 + z3 − 3xyz = 2003.

Solution. It is a well-known fact (which can be rediscovered e.g. by noticing that the left
hand side is a polynomial in x having −(y + z) as a zero) that

x3 + y3 + z3 − 3xyz = (x + y + z)(x2 + y2 + z2 − xy − yz − zx)

= (x + y + z)
(x − y)2 + (y − z)2 + (z − x)2

2
.

The second factor in the right hand side is non-negative. It is not hard to see that 2003 is
a prime. So the solutions of the equation either satisfy{

x + y + z = 1

(x − y)2 + (y − z)2 + (z − x)2 = 4006

or {
x + y + z = 2003

(x − y)2 + (y − z)2 + (z − x)2 = 2
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Square numbers are ≡ 0 or ≡ 1 mod 3. So in the first case, exactly two of the squares
(x− y)2, (y − z)2, and (z −x)2 are multiples of 3. Clearly this is not possible. So we must
have x + y + z = 2003 and (x − y)2 + (y − z)2 + (z − x)2 = 2. This is possible if and only
if one of the squares is 0 and two are 1’s. So two of x, y, z have to be equal and the third
must differ by 1 of these. This means that two of the numbers have to be 668 and one
667. A substitution to the original equation shows that this necessary condition is also
sufficient.

03.3. The point D inside the equilateral triangle �ABC satisfies ∠ADC = 150◦. Prove
that a triangle with side lengths |AD|, |BD|, |CD| is necessarily a right-angled triangle.

Figure 14.

Solution. (See Figure 14.) We rotate the figure counterclockwise 60◦ around C. Because
ABC is an equilateral triangle, ∠BAC = 60◦, so A is mapped on B. Assume D maps to
E. The properties of rotation imply AD = BE and ∠BEC = 150◦. Because the triangle
DEC is equilateral, DE = DC and ∠DEC = 60◦. But then ∠DEB = 150◦ − 60◦ = 90◦.
So segments having the lengths as specified in the problem indeed are sides of a right
triangle.

03.4. Let R
∗ = R\{0} be the set of non-zero real numbers. Find all functions f : R

∗ → R
∗

satisfying
f(x) + f(y) = f(xy f(x + y)),

for x, y ∈ R
∗ and x + y �= 0.

Solution. If x �= y, then

f(y) + f(x − y) = f(y(x − y)f(x)).

Because f(y) �= 0, we cannot have f(x− y) = f(y(x− y)f(x)) or x− y = y(x− y)f(x). So

for all x �= y, yf(x) �= 1. The only remaining possibility is f(x) =
1
x

. – One easily checks

that f , f(x) =
1
x

, indeed satisfies the original functional equation.
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04.1. 27 balls, labelled by numbers from 1 to 27, are in a red, blue or yellow bowl. Find
the possible numbers of balls in the red bowl, if the averages of the labels in the red, blue,
and yellow bowl are 15, 3 ja 18, respectively.
Solution. Let R, B, and Y , respectively, be the numbers of balls in the red, blue, and
yellow bowl. The mean value condition implies B ≤ 5 (there are at most two balls with a
number < 3, so there can be at most two balls with a number > 3). R, B and Y satisfy
the equations

R + B + Y = 27

15R + 3S + 18Y =
27∑

j=1

j = 14 · 27 = 378.

We eliminate S to obtain 4R + 5Y = 99. By checking the possibilities we note that the
pairs of positive integers satisfying the last equation are (R, Y ) = (21, 3), (16, 7), (11, 11),
(6, 15), and (1, 19). The last two, however, do not satisfy B = 27− (R + Y ) ≤ 5. We still
have to ascertain that the three first alternatives are possible. In the case R = 21 we can
choose the balls 5, 6, . . . , 25, in the red bowl, and 2, 3 and 4 in the blue bowl; if P = 16,
7, 8, . . . , 14, 16, 17, . . . , 23, can go to the red bowl and 1, 2, 4 and 5 in the blue one, and
if P = 11, the red bowl can have balls 10, 11, . . . 20, and the blue one 1, 2, 3, 4, 5. The
red bowl can contain 21, 16 or 11 balls.
04.2. Let f1 = 0, f2 = 1, and fn+2 = fn+1 + fn, for n = 1, 2, . . ., be the Fibonacci
sequence. Show that there exists a strictly increasing infinite arithmetic sequence none
of whose numbers belongs to the Fibonacci sequence. [A sequence is arithmetic, if the
difference of any of its consecutive terms is a constant.]
Solution. The Fibonacci sequence modulo any integer n > 1 is periodic. (Pairs of
residues are a finite set, so some pair appears twice in the sequence, and the sequence from
the second appearance of the pair onwards is a copy of the sequence from the first pair
onwards.) There are integers for which the Fibonacci residue sequence does not contain
all possible residues. For instance modulo 11 the sequence is 0, 1, 1, 2, 3, 5, 8, 2, 10, 1,
0, 1, 1, . . . Wee see that the number 4 is missing. It follows that no integer of the form
4 + 11k appears in the Fibonacci sequence. But here we have an arithmetic sequence of
the kind required.
04.3. Let x11, x21, . . . , xn1, n > 2, be a sequence of integers. We assume that all of
the numbers xi1 are not equal. Assuming that the numbers x1k, x2k, . . . , xnk have been
defined, we set

xi,k+1 =
1
2
(xik + xi+1,k), i = 1, 2, . . . , n − 1,

xn,k+1 =
1
2
(xnk + x1k).

Show that for n odd, xjk is not an integer for some j, k. Does the same conclusion hold
for n even?
Solution. We compute the first index modulo n, i.e. x1k = xn+1,k. Let Mk = maxj xjk

and mk = minj xjk. Evidently (Mk) is a non-increasing and (mk) a non-decreasing se-
quence, and Mk+1 = Mk is possible only if xjk = xj+1,k = Mk for some j. If exactly p
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consequtive numbers xjk equal Mk, then exactly p − 1 consequtive numbers xj,k+1 equal
Mk+1 which is equal to Mk. So after a finite number of steps we arrive at the situa-
tion Mk+1 < Mk. In a corresponding manner we see that mk+1 > mk for some k’s.
If all the numbers in all the sequences are integers, then all mk’s and Mk’s are inte-
gers. So after a finite number of steps mk = Mk, and all numbers xjk are equal. Then
x1,k−1 + x2,k−1 = x2,k−1 + x3,k−1 = · · · = xn−1,k−1 + xn,k−1 = xn,k−1 + x1,k−1. If n is
odd, then x1,k−1 = x3,k−1 = · · · = xn,k−1 and x1,k−1 = xn−1,k−1 = · · · = x2,k−1. But
then we could show in a similar way that all numbers xj,k−2 are equal and finally that all
numbers xj,1 are equal, contrary to the assumption. If n is even, then all xi,k’s can be
integers. Take, for instance, x1,1 = x3,1 = · · · = xn−1,1 = 0, x2,1 = x4,1 = · · · = xn,1 = 2.
Then every xj,k = 1, k ≥ 2.
04.4. Let a, b, and c be the side lengths of a triangle and let R be its circumradius. Show
that

1
ab

+
1
bc

+
1
ca

≥ 1
R2

.

Solution 1. By the well-known (Euler) theorem, the inradius r and circumradius R of
any triangle satisfy 2r ≤ R. (In fact, R(R− 2r) = d2, where d is the distance between the
incenter and circumcenter.) The area S of a triangle can be written as

A =
r

2
(a + b + c),

and, by the sine theorem, as

A =
1
2
ab sin γ =

1
4

abc

R
.

Combining these, we obtain

1
ab

+
1
bc

+
1
ca

=
a + b + c

abc
=

2A

r
· 1
4RA

=
1

2rR
≥ 1

R2
.

Solution 2. Assume a ≤ b ≤ c. Then b = a + x and c = a + x + y, x ≥ 0, y ≥ 0. Now
abc−(a+b−c)(a−b+c)(−a+b+c) = a(a+x)(a+x+y)−(a−y)(a+2x+y)(a+y) = ax2+
axy+ay2+2xy2+y3 ≥ 0. So abc(a+b+c) ≥ (a+b+c)(a+b−c)(a−b+c)(−a+b+c) = 16A2,

where the last inequality is implied by Heron’s formula. When we substitute A =
abc

4R
(see

Solution 1) we obtain, after simplification,

a + b + c ≥ abc

R2
,

which is equivalent to the claim.
05.1. Find all positive integers k such that the product of the digits of k, in the decimal
system, equals

25
8

k − 211.
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Solution. Let

a =
n∑

k=0

ak10k, 0 ≤ ak ≤ 9, for 0 ≤ k ≤ n − 1, 1 ≤ an ≤ 9.

Set

f(a) =
n∏

k=0

ak.

Since
f(a) =

25
8

a − 211 ≥ 0,

a ≥ 8
25

· 211 =
1688
25

> 66. Also, f(a) is an integer, and gcf(8, 25) = 1, so 8 | a. On the
other hand,

f(a) ≤ 9n−1an ≤ 10nan ≤ a.

So
25
8

a − 211 ≤ a

or a ≤ 8
17

· 211 =
1688
17

< 100. The only multiples of 8 between 66 and 100 are 72, 80, 88,
and 96. Now 25 · 9 − 211 = 17 = 7 · 2, 25 · 10− 211 = 39 �= 8 · 0, 25 · 11− 211 = 64 = 8 · 8,
and 25 · 12 − 211 = 89 �= 9 · 6. So 72 and 88 are the numbers asked for.
05.2. Let a, b, and c be positive real numbers. Prove that

2a2

b + c
+

2b2

c + a
+

2c2

a + b
≥ a + b + c.

Solution 1. Use brute force. Removing the denominators and brackets and combining
simililar terms yields the equivalent inequality

0 ≤ 2a4 + 2b4 + 2c4 + a3b + a3c + ab3 + b3c + ac3 + bc3

−2a2b2 − 2b2c2 − 2a2c2 − 2abc2 − 2ab2c − 2a2bc

= a4 + b4 − 2a2b2 + b4 + c4 − 2b2c2 + c4 + a4 − 2a2c2

+ab(a2 + b2 − 2c2) + bc(b2 + c2 − 2a2) + ca(c2 + a2 − 2b2)
= (a2 − b2)2 + (b2 − c2)2 + (c2 − a2)2

+ab(a − b)2 + bc(b − c)2 + ca(c − a)2

+ab(2ab − 2c2) + bc(2bc − 2a2) + ca(2ca − 2b2).

The six first terms on the right hand side are non-negative and the last three can be written
as

2a2b2 − 2abc2 + 2b2c2 − 2a2bc + 2c2a2 − 2ab2c

= a2(b2 + c2 − 2bc) + b2(a2 + c2 − 2ac) + c2(a2 + b2 − 2ab)
= a2(b − c)2 + b2(c − a)2 + c2(a − b)2 ≥ 0.

So the original inequality is true.
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Solution 2. The inequality is equivalent to

2
(
a2(a + b)(a + c) + b2(b + c)(b + a) + c2(c + a)(c + b)

)
≥ (a + b + c)(a + b)(b + c)(c + a).

The left hand side can be factored as 2(a + b + c)(a3 + b3 + c3 + abc). Because a + b + c is
positive, the inequality is equivalent to

2(a3 + b3 + c3 + abc) ≥ (a + b)(b + c)(c + a).

After expanding the right hand side and subtracting 2abc, we get the inequality

2(a3 + b3 + c3) ≥ (a2b + b2c + c2a) + (a2c + b2a + c2b),

still equivalent to the original one. But we now have two instances of the well-known
inequality x3 + y3 + z3 ≥ x2y + y2z + z2x or x2(x− y)+ y2(y − z) + z2(z − x) ≥ 0. [Proof:
We may assume x ≥ y, x ≥ z. If y ≥ z, write z − x = z − y + y − z to obtain the
equivalent and true inequality (y2 − z2)(y − z) + (x2 − z2)(x − y) ≥ 0, if z ≥ y, similarly
write x − y = x − z + z − y, and get (x2 − z2)(x − z) + (x2 − y2)(z − y) ≥ 0.]
Solution 3. The original inequality is symmetric in a, b, c. So we may assume a ≥ b ≥ c,
which implies

1
b + c

≥ 1
c + a

≥ 1
a + b

.

The power mean inequality gives

a2 + b2 + c2

3
≥
(

a + b + c

3

)2

.

We combine this and the Chebyshev inequality to obtain

2a2

b + c
+

2b2

c + a
+

2c2

a + b

≥ 2
3
(a2 + b2 + c2)

(
1

b + c
+

1
c + a

+
1

a + b

)

≥ 2
9
(a + b + c)2

(
1

b + c
+

1
c + a

+
1

a + b

)
.

To complete the proof, we have to show that

2(a + b + c)
(

1
b + c

+
1

c + a
+

1
a + b

)
≥ 9.

But this is equivalent to the harmonic–arithmetic mean inequality

3
1
x

+
1
y

+
1
z

≤ x + y + z

3
,

with x = a + b, y = b + c, z = c + a.



57

05.3 There are 2005 young people sitting around a (large!) round table. Of these at most
668 are boys. We say that a girl G is in a strong position, if, counting from G to either
direction at any length, the number of girls is always strictly larger than the number of
boys. (G herself is included in the count.) Prove that in any arrangement, there always is
a girl in a strong position.
Solution. Assume the number of girls to be g and the number of boys b. Call a position
clockwise fairly strong, if, counting clockwise, the number of girls always exceeds the
number of boys. No girl immediately followed by a boy has a fairly strong position. But
no pair consisting of a girl and a boy following her has any effect on the fairly strongness of
the other positions. So we may remove all such pairs. so we are left with at least g−b girls,
all in a clockwise fairly strong position. A similar count of counterclockwise fairly strong
positions can be given, yielding at least g − b girls in such a position. Now a sufficient
condition for the existence of a girl in a strong position is that the sets consisting of the
girls in clockwise and counterclockwise fairly strong position is nonempty. This is certainly
true if 2(g − b) > g, or g > 2b. With the numbers in the problem, this is true.
05.4. The circle C1 is inside the circle C2, and the circles touch each other at A. A line
through A intersects C1 also at B and C2 also at C. The tangent to C1 at B intersects C2

at D and E. The tangents of C1 passing through C touch C1 at F and G. Prove that D,
E, F , and G are concyclic.

Figure 15.

Solution. (See Figure 15.) Draw the tangent CH to C2 at C. By the theorem of the
angle between a tangent and chord, the angles ABH and ACH both equal the angle at A
between BA and the common tangent of the circles at A. But this means that the angles
ABH and ACH are equal, and CH‖BE. So C is the midpoint of the arc DE. This again
implies the equality of the angles CEB and BAE, as well as CE = CD. So the triangles
AEC, CEB, having also a common angle ECB, are similar. So

CB

CE
=

CE

AC
,

and CB·AC = CE2 = CD2. But by the power of a point theorem, CB·CA = CG2 = CF 2.
We have in fact proved CD = CE = CF = CG, so the four points are indeed concyclic.
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06.1 Let B and C be points on two fixed rays emanating from a point A such that AB+AC
is constant. Prove that there exists a point D �= A such that the circumcircles of the
triangels ABC pass through D for every choice of B and C.

Figure 16.

Solution. (See Figure 16.) Let E and F be the points on rays AB and AC, respectively,
such that AE = AF = AB +AC. Let the perpendicular bisectors of the segments AE and
AF intersect at D. It is easy to see, for instance from the right triangles with AD as the
common hypothenuse and the projections of AD on AB and AC as legs, that D lies on the
angle bisector of angle BAC. Moreover, ∠ADF = 180◦−2 ·∠CAD = 180◦−∠BAC. The
triangle ADF is isosceles, so ∠BAD = ∠DAC = ∠CFD and AD = DF in the triangles
ABD and DCF . Moreover, we know that CF = AF − AC = AB. The triangles ADB
and FDC are congruent (sas). So ∠BDA = ∠CDF . But this implies ∠BDC = ∠ADF =
180◦−∠BAC. This is sufficient for ABDC to be an inscribed quadrilateral, and the claim
has been proved.
06.2. The real numbers x, y and z are not all equal and satisfy

x +
1
y

= y +
1
z

= z +
1
x

= k.

Determine all possible values of k.
Solution. Let (x, y, z) be a solution of the system of equations Since

x = k − 1
y

=
ky − 1

y
and z =

1
k − y

,

the equation
1

k − y
+

y

ky − 1
= k,

to be simplified into
(1 − k2)(y2 − ky + 1) = 0,
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is true. So either |k| = 1 or

k = y +
1
y
.

The latter alternative, substituted to the original equations, yields immediately x = y and

z = y. So k = ±1 is the only possibility. If k = 1, for instance x = 2, y = −1 and z =
1
2

is a solution; if k = −1, a solution is obtained by reversing the signs for a solution with
k = 1. So k = 1 and k = −1 are the only possible values for k.

06.3. A sequence of positive integers {an} is given by

a0 = m and an+1 = a5
n + 487

for all n ≥ 0. Determine all values of m for which the sequence contains as many square
numbers as possible.

Solution. Consider the expression x5 + 487 modulo 4. Clearly x ≡ 0 ⇒ x5 + 487 ≡ 3,
x ≡ 1 ⇒ x5 + 487 ≡ 0; x ≡ 2 ⇒ x5 + 487 ≡ 3, and x ≡ 3 ⇒ x5 + 487 ≡ 2. Square
numbers are always ≡ 0 or ≡ 1 mod 4. If there is an even square in the sequence, then all
subsequent numbers of the sequence are either ≡ 2 or ≡ 3 mod 4, and hence not squares.
If there is an odd square in the sequence, then the following number in the sequence can be
an even square, but then none of the other numbers are squares. So the maximal number
of squares in the sequence is two. In this case the first number of the sequence has to be the
first square, since no number of the sequence following another one satisfies x ≡ 1 mod 4.
We have to find numbers k2 such that k10 +487 = n2. We factorize n2 −k10. Because 487
is a prime, n − k5 = 1 and n + k5 = 487 or n = 244 and k = 3. The only solution of the
problem thus is m = 32 = 9.

06.4. The squares of a 100 × 100 chessboard are painted with 100 different colours. Each
square has only one colour and every colour is used exactly 100 times. Show that there
exists a row or a column on the chessboard in which at least 10 colours are used.

Solution. Denote by Ri the number of colours used to colour the squares of the i’th row
and let Cj be the number of colours used to colour the squares of the j’th column. Let rk

be the number of rows on which colour k appears and let ck be the number of columns on
which colour k appears. By the arithmetic-geometric inequality, rk + ck ≥ 2

√
rkck. Since

colour k appears at most ck times on each of the rk columns on which it can be found,
ckrk must be at least the total number of occurences of colour k, which equals 100. So
rk + ck ≥ 20. In the sum

∑100
i=1 Ri, each colour k contributes rk times and in the sum∑100

j=1 Cj each colour k contributes ck times. Hence

100∑
i=1

Ri +
100∑
j=1

Cj =
100∑
k=1

rk +
100∑
k=1

ck =
100∑
k=1

(rk + ck) ≥ 2000.

But if the sum of 200 positive integers is at least 2000, at least one of the summands is at
least 10. The claim has been proved.



60

07.1. Find one solution in positive integers to the equation

x2 − 2x − 2007y2 = 0.

Solution. The equation can be written in the form

x(x2) = 223 · (3y)2.

Here the prime number 223 must divide x or x2. In fact, for x = 225 we get x(x2) =
152 · 223, which is equivalent to 223 · (3y)2 for y = 5. Thus, (x, y) = (225, 5) is one
solution.
07.2. A triangle, a line and three rectangles, with one side parallel to the given line, are
given in such a way that the rectangles completely cover the sides of the triangle. Prove
that the rectangles must completely cover the interior of the triangle.
Solution. Take any point P inside the triangle and draw through P the line parallel to
the given line as well as the line perpendicular to it. These lines meet the sides of the
triangle in four points. Of these four, two must be in one of the three rectangles. Now if
the two points are on the same line, then the whole segment between them, P included,
is in the same rectangle. If the two points, say Q and R, are on perpendicular lines, the
perpendicular segments RP and PQ are also in the same rectangle. So in any case, P is
in one of the rectangles.
07.3. The number 102007 is written on a blackboard, Anne and Berit play a game where
the player in turn makes one of two operations:
(i) replace a number x on the blackboard by two integer numbers a and b greater than 1

such that x = ab;
(ii) erase one or both of two equal numbers on the blackboard.
The player who is not able to make her turn loses the game. Who has a winning strategy?
Solution. We describe a winning strategy for Anne. Her first move is

102007 → 22007, 52007.

We want to show that Anne can act in such a way that the numbers on the blackboard
after each of her moves are of the form

2α1 , . . . , 2αk , 5α1 , . . . , 5αk .

This is the case after Anne’s first move. If Berit for example replaces 2αj by 2β1 and 2β2 ,
then Anne would replace 5αj by 5α1 and 5α2 . If Berit for example erases 5αj or two 5αj ’s,
(which means that there is an αi = αj) then Anne would erase 2αj or 2 2αj ’s. Thus for
each move Berit makes, Anne can answer with a ’symmetric’ move. Since the game is
finite, Berit must be the first player failing to make a move. Thus Anne has a winning
strategy.
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07.4. A line through a point A intersects a circle in two points, B and C, in such a way
that B lies between A and C. From the point A draw the two tangents to the circle, meeting
the circle at points S and T . Let P be the intersection of the lines ST and AC. Show that
AP/PC = 2 · AB/BC.

Solution. First we show that if we fix the points
A, B and C but vary the circle, then the point P
stays fixed. To that end, suppose we have two different
circles through B and C. Draw the tangents from A to
one circle, meeting the circle at points S1 and T1, and
the tangents to the other circle, meeting that circle at
points S2 and T2. Then, according to the power of a
point theorem

AS2
1 = AT 2

1 = AB · AC = AS2
2 = AT 2

2 .

This implies that all the tangent points S1, T1, S2 and
T2 lie on the same circle with center A. Let Q be the
intersection of S1T1 and S2T2. Then by applying again the theorem of a power of a point
but now with respect to the circle with center A, we have that QS1 ·QT1 = QS2 ·QT2. But
this in turn means that the point Q has the same power with respect to the two circles we
started with, and hence lies on the radical axis of those two circles, that is, the line BC
(the radical axis is the locus of points of equal power with respect to two given circles). So
Q is the intersection of AC and both S1T1 and S2T2, which proves that the intersection
point defined in the problem is the same for both circles.
Since the location of P is independent of the circle through B and C we can, without loss
of generality, choose the circle with BC as diameter. Let O be the center of this circle,
R its radius, d = AO, and r = PO. Then the triangles ASO and SPO are similar, so
OS/AO = PO/OS, that is, R/d = r/R, or R2 = dr. Then finally we have

AP

PC
=

d − r

R + r
=

d2 − dr

dR + dr
=

d2 −R 2
dr + r2

=
d − R

R
= 2 · d − R

2R
= 2 · AB

BC
.

08.1. Determine all real numbers A, B and C such that there exists a real function f that
satisfies

f (x + f(y)) = Ax + By + C.

for all real x and y.
Solution. Let A, B and C be real numbers and f a function such that f(x + f(y)) =
Ax+By+C for all x and y. Let z be a real number and set x = z−f(0) and y = 0. Then

f(z) = f(z − f(0) + f(0)) = A(z − f(0)) + B · 0 + C = Az − Af(0) + C,

so there are numbers a and b such that f(z) = az + b for all z. Now f(x + f(g)) =
ax + a2y + (a + 1)b, and (A, B, C) = (a, a2, (a + 1)b), where a and b are arbitrary
real numbers, that is, (A, B, C) = (a, a2, c), where a �= −1 and c are arbitrary, or
(A, B, C) = (−1, 1, 0)
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08.2. Assume that n ≥ 3 people with different names sit around a round table. We call
any unordered pair of them, say M and N , dominating, if

(i) M and N do not sit on adjacent seats, and

(ii) on one (or both) of the arcs connecting M and N along the table edge, all people have
names that come alphabetically after the names of M and N .

Determine the minimal number of dominating pairs.

Solution. We will show by induction that the number of dominating pairs (hence also the
minimal number of dominating pairs) is n− 3 for n ≥ 3. If n = 3, all pairs of people sit on
adjacent seats, so there are no dominating pairs. Assume that the number of dominating
pairs is n−3 for some n > 3. If there are n+1 people around the table, let the person whose
name is alphabetically last leave the table. The two people sitting next to that person, who
formed a dominating pair, no longer do. On the other hand, any other dominating pair
remains a dominating pair in the new configuration of n people, and any dominating pair
in the new configuration was also a dominating pair in the old. The number of dominating
pairs in the new configuration is n − 3, so the number in the old was (n + 1) − 3.

08.3. Let ABC be a triangle and let D and E be points
on BC and CA, respectively, such that AD and BE
are angle bisectors of ABC. Let F and G be points on
the circumcircle of ABC such that AF and DE are
parallel and FG and BC are parallel. Show that

AG

BG
=

AC + BC

AB + CB
.

Solution. Let AB = c, BC = a and CA = b. Then it
follows from the angle bisector theorem that CD =
ab/(b + c). Similarly, CE = ab/(a + c), so CD/CE = (a + c)/(b + c). The angles
∠ABG, ∠AFG and ∠EDC are equal, and so are ∠AGB and ∠ACB, and consequently,
the triangles CED and GAB are similar. The conclusion follows.

08.4. The difference between the cubes of two consecutive positive integers is a square n2,
where n is a positive integer. Show that n is the sum of two squares.

Solution. Assume that (m + 1)3 − m3 = n2. Rearranging, we get 3(2m + 1)2 = (2n +
1)(2n − 1). Since 2n + 1 and 2n − 1 are relatively prime (if they had a common divisor,
it would have divided the difference, which is 2, but they are both odd), one of them is a
square (of an odd integer, since it is odd) and the other divided by 3 is a square. An odd
number squared minus 1 is divisible by 4 since (2t + 1)2 − 1 = 4(t2 + t). From the first
equation we see that n is odd, say n = 2k + 1. Then 2n + 1 = 4k + 3, so the square must
be 2n − 1, say 2n − 1 = (2t + 1)2. Rearrangement yields n = t2 + (t + 1)2. (An example:
83 − 73 = (22 + 32)2.)

09.1. A point P is chosen in an arbitrary triangle. Three lines are drawn through P which
are parallel to the sides of the triangle. The lines divide the triangle into three smaller
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triangles and three parallelograms. Let f be the ratio between the total area of the three

smaller triangles and the area of the given triangle. Show that f ≥ 1
3

and determine those

points P for which f =
1
3
.

Solution. Let ABC be the triangle and let the lines
through P parallel to its sides intersect the sides in
the points D, E; F , G and H, I. The triangles ABC,
DEP , PFG and IPH are similar and BD = IP ,
EC = PF . If BC = a, IP = a1, DE = a2 ja
PF = a3, then a1 + a2 + a3 = a. There is a posi-
tive k such that the areas of the triangles are ka2, ka2

1,
ka2

2 and ka2
3. But then

f =
ka2

1 + ka2
2 + ka2

3

ka2
=

a2
1 + a2

2 + a2
3

(a1 + a2 + a3)2
.

By the arithmetic-quadratic inequality,

(a1 + a2 + a3)2

9
≤ a2

1 + a2
2 + a2

3

3
,

where equality holds if and only if a1 = a2 = a3. It is easy to see that a1 = a2 = a3 implies

that P is the centroid of ABC. So f ≥ 1
3
, and f =

1
3

if and only if P is the centroid of
ABC.
09.2. On a faded piece of paper it is possible, with some effort, to discern the following:

(x2 + x + a)(x15 − . . .) = x17 + x13 + x5 − 90x4 + x − 90.

Some parts have got lost, partly the constant term of the first factor of the left side, partly
the main part of the other factor. It would be possible to restore the polynomial forming
the other factor, but we restrict ourselves to asking the question: What is the value of the
constant term a? We assume that all polynomials in the statement above have only integer
coefficients.
Solution. We denote the polynomial x2 + x + a by Pa(x), the polynomial forming the
other factor of the left side by Q(x) and the polynomial on the right side by R(x). The
polynomials are integer valued for every integer x. For x = 0 we get Pa(0) = a and
R(0) = −90, so a is a divisor of 90 = 2 · 3 · 3 · 5. For x = −1 we get Pa(−1) = −184, so a
is also a divisor of 184 = 2 · 2 · 2 · 23. But the only prime factor in common is 2. So the
only possibilities for a are ±2 and ±1. If a = 1, we get for x = 1 that P1(1) = 3, while
R(1) = 4 − 180 = −176, which cannot be divided by 3. If a = −2 we get for x = 1 that
P2(1) = 0, i.e. the left side is equal to 0, while the right side is equal to R(1) = −176,
which is different from 0. Neither a = 1 nor a = −2 will thus work. It remains to check
a = 2 and a = −1. Before we use the procedure above again, we need a factorization of
R(x). We observe that x4 + 1 is a divisor of R(x), since the right side may be written as
(x4 + 1)(x13 + x − 90). If a = −1 we get for x = 2 that P1(2) = 5, while x4 + 1 = 17 and
x13 +x− 90 = 8104. So the right hand side is not divisible by 5. Now, the only remaining
possibility is a = 2, i.e. x2 + x + 2 is a divisor of R(x).
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09.3. The integers 1, 2, 3, 4 and 5 are written on a blackboard. It is allowed to wipe out
two integers a and b and replace them with a + b and ab. Is it possible, by repeating this
procedure, to reach a situation where three of the five integers on the blackboard are 2009?

Solution. The answer is no. First notice that in each move two integers will be replaced
with two greater integers (except in the case where the number 1 is wiped out). Notice
also that from the start there are three odd integers. If one chooses to replace two odd
integers on the blackboard, the number of odd integers on the blackboard decreases. If
one chooses to replace two integers, which are not both odd, the number of odd integers
on the blackboard is unchanged. To end up in a situation, where three of the integers on
the blackboard are 2009, then it is not allowed in any move to replace two odd integers.
Hence the number 2009 can only be obtained as a sum a + b. In the first move that gives
the integer 2009 on the blackboard, one has to choose a and b such that a + b = 2009. In
this case either ab > 2009 or ab = 2008. In the case ab = 2008, one of the factors is equal
to 1, and hence 1 does no longer appear on the blackboard. The two integers a+ b = 2009
and ab that appears in the creation of the first 2009 cannot be used any more in creation of
the remaining two integers of 2009. Also the next 2009 can only be obtained if one chooses
c and d such that c + d = 2009 and cd > 2009 or cd = 2008, and in the last case 1 does
not appear any longer on the blackboard. The numbers c + d = 2009 and cd cannot be
used in obtaining the last integer 2009. Hence the last integer 2009 cannot be obtained.

09.4. There are 32 competitors in a tournament. No two of them are equal in playing
strength, and in a one against one match the better one always wins. Show that the gold,
silver, and bronze medal winners can be found in 39 matches.

Solution. To determine the gold medalist, we organize 16 pairs and matches, then 8
matches of the winners, 4 matches of the winners, 2 and finally one match, 31 matches
altogether. Now the silver medal winner has at some point lost to number 1; as there were
5 rounds, there are 5 candidates. Let Ci be the candidate who lost to the gold medalist
in round i. Now let Cl and C2 play, the winner then play with C3 etc. After 4 matches
we know the silver medalist; assume she was Ck. Now the bronze medalist must have lost
against the gold medalist or against Ck or both. (If she lost to someone else, this someone
else was below the second place). Now the silver medalist Ck won k − 1 times in the first
rounds and the 5 − k players Ck+1, . . . , C5, and if k ¿ 1 one player Cj with j < k. So
there are either k − 1 + 5 − k = 4 or 5 candidates for the third place. At most 4 matches
are again needed to determine the bronze winner.

10.1. A function f : Z → Z+, where Z+ is the set of positive integers, is non-decreasing
and satisfies f(mn) = f(m)f(n) for all relatively prime positive integers m and n. Prove
that f(8)f(13) ≥ (f(10))2.

Solution. Since f is non-decreasing, f(91) ≥ f(90), which (by factorization into rela-
tively prime factors) implies f(13)f(7) ≥ f(9)f(10). Also f(72) ≥ f(70), and therefore
f(8)f(9) ≥ f(7)f(10). Since all values of f are positive, we get f(8)f(9) · f(13)f(7) ≥
f(7)f(10) · f(9)f(10), and dividing both sides by f(7)f(9) > 0, f(8)f(13) ≥ f(l0)f(10) =
(f(10))2.

10.2. Three circles ΓA, ΓB and ΓC share a common point of intersection O. The other
common of ΓA and ΓB is C, that of ΓA and ΓC is B and that of ΓC and ΓB is A. The
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line AO intersects the circle ΓC in the poin X �= O. Similarly, the line BO intersects the
circle ΓB in the point Y �= O, and the line CO intersects the circle ΓC in the point Z �= O.
Show that

|AY ||BZ||CX |
|AZ||BX ||CY | = 1.

Solution 1. Let ∠AOY = α, ∠AOZ = β and
∠ZOB = γ. So α + β + γ = 180◦. Also ∠BOX = α
(vertical angles) and ∠ACY = α = ∠BCX (an-
gles subtending equal arcs); similarly ∠COX = β,
∠ABZ = β = ∠CBX ; ∠COY = γ; ∠BAZ = γ =
∠CAY . Each of the triangles CY A, CBX and ZBA
have two angles from the set {α, β, γ}. All triangles
are then similar.

Similarity implies
AY

CY
=

AB

BZ
,

CX

BX
=

AZ

AB
.

Consequently
AY

AZ
· BZ

BX
· CX

CY
=

AB

BZ
· AZ

AB
· BZ

AZ
= 1.

Solution 2. Define α, β and γ as in Solution 1. Let the radii of the circles ΓA, ΓB

and ΓC be RA, RB and RC , respectively. The sine theorem implies AY = 2RB sin α,
BZ = 2RC sin γ, CX = 2RA sin β, AZ = 2RC sin β, BX = 2RA sin α and CY = 2RB sin γ.
Inserting these in the expression given in the problem one immediately sees that the ex-
pression has the value 1.

10.3. Laura has 2010 lamps connected with 2010 buttons in front of her. For each but-
ton, she wants to know the corresponding lamp. In order to do this, she observes which
lamps are lit when Richard presses a selection of buttons. (Not pressing anything is also
a possible selection.) Richard always presses the buttons simultaneously, so the lamps are
lit simultaneously, too.
a) If Richard chooses the buttons to be pressed, what is the maximum number of different

combinations of buttons he can press until Laura can assign the buttons to the lamps
correctly?

b) Supposing that Laura will choose the combinations of buttons to be pressed, what is
the minimum number of attempts she has to do until she is able to associate the buttons
with the lamps in a correct way?

Solution. a) Let us say that two lamps are separated, if one of the lamps is turned on
while the other lamp remains off. Laura can find out which lamps belong to the buttons
if every two lamps are separated. Let Richard choose two arbitrary lamps. To begin with,
he turns both lamps on and then varies all the other lamps in all possible ways. There are
22008 different combinations for the remaining 2010−2 = 2008 lamps. Then Richard turns
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the two chosen lamps off. Also, at this time there are 22008 combinations for the remaining
lamps. Consequently, for the 22009 combinations in all, it is not possible to separate the
two lamps of the first pair. However, we cannot avoid the separation if we add one more
combination. Indeed, for every pair of lamps, we see that if we turn on a combination of
lamps 22009 + 1 times, there must be at least one setup where exactly one of the lamps is
turned on and the other is turned off. Thus, the answer is 22009 + 1.
b) For every new step with a combination of lamps turned on, we get a partition of the set of
lamps into smaller and smaller subsets where elements belonging to the same subset cannot
be separated. In each step every subset is either unchanged or divided into two smaller
parts, i.e. the total number of subsets after k steps will be at most 2k. We are finished
when the number of subsets is equal to 2010, so the answer is at least �log2 2010� = 11.
But it is easy to see that Laura certainly can choose buttons in every step in such a way
that there are at most 211−k lamps in every part of the partition after k steps. Thus, the
answer is 11.
10.4. A positive integer is called simple if its ordinary decimal representation consists
entirely of zeroes and ones. Find the least positive integer k such that each positive integer
n can be written as n = a1 ± a2 ± a3 ± · · · ± ak, where a1, . . . , ak are simple.
Solution. We can always write n = al +a2 + · · ·+a9 where aj has 1’s in the places where
n has digits greater or equal to j and 0’s in the other places. So k ≤ 9. To show that k ≥ 9,
consider n = 10203040506070809. Suppose n = al + a2 + · · ·+ aj − aj+l − aj+2 − · · · − ak,
where al, . . . , ak are simple, and k < 9. Then all digits of bl = al + · · · + aj are not
greater than j and all digits of b2 = aj+l + · · · + ak are not greater than k − j. We have
n+b2 = bl. We perform column addition of n and b2 and consider digit j+1 in the number
n. There will be no carry digit coming from lower decimal places, since the sum there is
less that 10 . . .0 + 88 . . .8 = 98 . . . 8. So in the column of j + 1 we get the sum of j + 1
and the corresponding digit in b2. The resulting digit should be less than j + 1. Thus in
the corresponding place in b2 we have at least 9 − j. But 9 − j ≤ k − j, implying k ≥ 9.
Hence, we have proved that the maximal k is 9.
11.1. When a0, a1, . . . , a1000 denote digits, can the sum of the 1001-digit numbers
a0a1 . . . a1000 and a1000a999 . . . a0 have odd digits only?
Solution. The answer is no. The following diagram illustrates the calculation of the sum
digit by digit.

a0 a1 . . . ai . . . a500 . . . a1000−i . . . a999 a1000

a1000 a999 . . . a1000−i . . . a500 . . . ai . . . a1 a0

s1001 s1000 s999 . . . s1000−i . . . s500 . . . si . . . s1 s0

Thus si are the digits of the sum. The digit slool may be absent. We call column i the
column in the diagram with the digit si. Assume that si is odd fori = 0, 1, . . . , 1000. By
induction on i we prove that a2i + alooo−2i is odd for i = 0, 1, . . . , 250. This implies that
a2·250 + al000−2·250 = 2a500 is odd, which is a contradiction. Here is the proof: Since s0 is
odd, a0 +a1000 is odd, so the statement is true for i= 0. Assume that a2i +a1000−2i is odd
for some i ∈ {0, 1, . . . , 224}. Since s1000−2i is odd and a2i + a1000−2i is odd, there is no
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carry in column 1000− 2i, so a2i+1 + a1000−(2i+1) ≤ 9. But then because s2i+1 is odd and
a2i+1 + a1000−(2i+1) ≤ 9, there is no carry in column 2i + 2. Hence a2i+2 + a1000−(2i+2) is
odd because s2i+2 is odd. This completes the induction step.

11.2. In a triangle ABC assume AB = AC, and let D and E be points on the extension
of segment BA beyond A and on the segment BC, respectively, such that the lines CD

and AE are parallel. Prove that CD ≥ 4h

BC
CE, where h is the height from A in triangle

ABC. When does equality hold?

Solution. Because AE‖DC, the triangles ABE and
DBC are similar. So

CD =
BC

BE
· AE

ja

CD =
AE · BC

BE · CE
· CE. (1)

Let AF be an altitude of ABC. Then AE ≥ AF = h,
and equality holds if and only if E = F . Because ABC is isosceles, F is the midpoint of
BC. The arithmetic-geometric mean inequality yields

BE · CE ≤
(

BE + EC

2

)2

=
(

BC

2

)2

,

and equality holds if and only if E is the midpoint of BC i.e. E = F . The conclusion folows
when these estimates are inserted in (1); furthermore, equality is equivalent to E = F

11.3. Find all functions f such that

f(f(x) + y) = f(x2 − y) + 4yf(x)

for all real numbers x and y.

Solution. Substituting y = x2 yields f(f(x) + x2) = f(0) + 4x2f(x) for all real x. And
y = −f(x) gives f(0) = f(x2 + f(x)) − 4f(x)2 for all x. Combining these two equations
gives 4f(x)2 = 4x4f(x), so for each x either f(x) = 0 or f(x) = x2. In particular f(0) = 0.
Now suppose there exists a real number a �= 0 such that f(a) �= 0. Then f(a) = a2

and f(a2 + y) = f(a2 − y) + 4ya2 for all y. If f(a2 − y) = 0 for some y �= 0, then
f(a2 + y) = 4ya2 �= 0, so f(a2 + y) = (a2 + y)2 must hold and then (a2 + y)2 = 4ya2,
which yields (a2 − y)2 = 0, or a2 − y = 0. This shows that if f(a) �= 0 for some a then
f(x) = 0 only when x = 0. So either f(x) = 0 for all x or f(x) = x2 for all x. It can easily
be verified that these two functions are indeed solutions to the given equation.

11.4. Show that for any integer n ≥ 2 the sum of the fractions
1
ab

, where a and b are

relatively prime positive integers such that a < b ≤ n and a + b > n, equals
1
2
.
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Solution. We prove this by induction. First observe that the statement holds for n = 2,
because a = 1 and b = 2 are the only numbers which satisfy the conditions. Next we show

that increasing n by 1 does not change the sum, so it remains equal to
1
2
. To that end it

suffices to show that the sum of the terms removed from the sum equals the sum of the
new terms added. All the terms in the sum for n − 1 remain in the sum for n except the

fractions
1
ab

with a and b relatively prime, 0 < a < b ≤n and a + b = n. On the other

hand the new fractions added to the sum for n have the form
1
an

with 0 < a < n. So it
suffices to show ∑

0<a<n/2
(a, n−a)=1

1
n(a − n)

=
∑

0<a<n
(a, n)=1

1
an

.

(We denote the greatest common factor of x and y by (x, y).) Since (a, n) = (n − a, n),
the terms in the sum on the right hand side can be grouped into pairs

1
an

+
1

(n − a)n
=

(n − a) + a

a(n − a)n
=

1
a(n − a)

.

No term is left out because if n is even and greater than 2 then (n/2, n) =
n

2
> 1. So the

right hand side is given by

∑
0<a<n
(a, n)=1

1
an

=
∑

0<a<n/2
(a, n)=1

1
a(n − a)

=
∑

0<a<n/2
(a, n−a)=1

1
a(n − a)

,

which is what we had to prove.
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