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Solutions

Problem 1.

Let ABC be a triangle and Γ the circle with diameter AB. The bisectors of ∠BAC and
∠ABC intersect Γ (also) at D and E, respectively. The incircle of ABC meets BC and
AC at F and G, respectively. Prove that D, E, F and G are collinear.

Solution 1. Let the line ED meet AC at G′ and
BC at F ′. AD and BE intersect at I, the incenter
of ABC. As angles subtending the same arc

�
BD ,

∠DAB = ∠DEB = ∠G′EI. But ∠DAB = ∠CAD =
∠G′AI. This means that E, A, I and G′ are concyclic,
and ∠AEI = ∠AG′I as angles subtending the same
chord AI. But AB is a diameter of Γ, and so ∠AEB =
∠AEI is a right angle. So IG′⊥AC, or G′ is the foot of
the perpendicular from I to AC. This implies G′ = G.
In a similar manner we prove that F ′ = F , and the
proof is complete.

Solution 2. (Read the attached figure so that F ′ and G′ are as F and G in the problem
text.) The angles ∠AEI = ∠AEB and ∠AGI are right angles. This means that AIGE is
a cyclic quadrilateral. But then ∠BEG = ∠IEG = ∠IAG = ∠DAC = ∠DAB = ∠BED,
implying that G and D are on the same line through E. The same argument shows F and
E are on the same line through D. So the points G and F are on the line ED.

Problem 2.

Find the primes p, q, r, given that one of the numbers pqr and p + q + r is 101 times the
other.

Solution. We may assume r = max{p, q, r}. Then p + q + r ≤ 3r and pqr ≥ 4r.
So the sum of the three primes is always less than their product. The only relevant
requirement thus is pqr = 101(p + q + r). We observe that 101 is a prime. So one of
p, q, r must be 101. Assume r = 101. Then pq = p + q + 101. This can be written as
(p−1)(q−1) = 102. Since 102 = 1 · 102 = 2 · 51 = 3 · 34 = 6 · 17, the possibilities for {p, q}
are {2, 103}, {3, 52}, {4, 35}, {7, 18} The only case, where both the numbers are primes,
is {2, 103}. So the only solution to the problem is {p, q, r} = {2, 101, 103}.

Problem 3.



Let n > 1 and p(x) = xn +an−1x
n−1 + · · ·+a0 be a polynomial with n real roots (counted

with multiplicity). Let the polynomial q be defined by

q(x) =
2015∏
j=1

p(x + j).

We know that p(2015) = 2015. Prove that q has at least 1970 different roots r1, . . . , r1970

such that |rj| < 2015 for all j = 1, . . . , 1970.

Solution. Let hj(x) = p(x+ j). Consider h2015. Like p, it has n real roots s1, s2, . . . , sn,
and h2015(0) = p(2015) = 2015. By Viète, the product |s1s2 · · · sn| equals 2015. Since
n ≥ 2, there is at least one sj such that |sj | ≤

√
2015 <

√
2025 = 45. Denote this sj by

m. Now for all j = 0, 1, . . . , 2014, h2015−j(m+ j) = p(m+ j +2015− j) = p(m+2015) =
h2015(m) = 0. So m, m + 1, . . . , m + 2014 are all roots of q. Since 0 ≤ |m| < 45, the
condition |m + j| < 2015 is satisfied by at least 1970 different j, 0 ≤ j ≤ 2014, and we are
done.

Problem 4.
An encyclopedia consists of 2000 numbered volumes. The volumes are stacked in order
with number 1 on top and 2000 in the bottom. One may perform two operations with the
stack:
(i) For n even, one may take the top n volumes and put them in the bottom of the stack

without changing the order.

(ii) For n odd, one may take the top n volumes, turn the order around and put them on
top of the stack again.

How many different permutations of the volumes can be obtained by using these two
operations repeatedly?

Solution 1. (By the proposer.) Let the positions of the books in the stack be
1, 2, 3, . . . , 2000 from the top (and consider them modulo 2000). Notice that both op-
erations fix the parity of the number of the book at a any given position. Operation (i)
subtracts an even integer from the number of the book at each position. If A is an opera-
tion of type (i), and B is an operation of type (ii), then the operation A−1BA changes the
order of the books in the positions n + 1 to n + m where n is even and m is odd. This is
called turning the interval.
Now we prove that all the volumes in odd positions can be placed in the odd positions
in every way we like: If the volume we want in position 1 is in position m1, we turn the
interval 1 to m1. Now if the volume we want in position 3 is in position m3, we turn the
interval 3 to m3, and so on. In this way we can permute the volumes in odd positions
exactly as we want to.
Now we prove that we can permute the volumes in even positions exactly as we want
without changing the positions of the volumes in the odd positions: We can make a
transposition of the two volumes in position 2n and 2n+2m by turning the interval 2n+1
to 2n + 2m− 1, then turning the interval 2n + 2m + 1 to 2n− 1, then turning the interval
2n + 1 to 2n − 1, and finally adding 2m to the number of the volume in each position.



Since there are 1000! permutations of the volumes in the odd positions, and 1000! permu-
tations of the volumes in the even positions, altogether we have (1000!)2 different permu-
tations.
Solution 2. We show that the volumes can be permuted so that the volumes with odd
numbers are in an arbitrary order in the odd-numbered palaces and the volumes with
even numbers are in an arbitrary order in the even-numbered places. The main idea is to
construct two combinations of the allowed operations. The first one turns the volumes in
a specified interval, starting and ending in an odd-numbered place, in the opposite order
while keeping everything outside this interval fixed, or keeps everything fixed in an interval
while turning the order of the volumes outside this interval in the opposite direction, when
the counting starts below that interval and is continued from the top after reaching the
bottom volume. The second combined operation just exchanges two volumes in even-
numbered places while keeping everything else fixed. – It is clear that 2000 is not a special
number, and it could be replaced by a generic even integer. However, we formulate the
proof according to the problem text.
Let E = {1, 2, . . . , 2000}. We formulate the operations described in conditions (i) and
(ii), depending on an even integer n and odd integer m as functions fn : E → E and
gm : E → E, defined by

fn(p) =
{

2000 + p − n for p ≥ n,
p − n for n < p

and gm(p) =
{

m − p + 1 for p ≤ m,
p for m < p.

We immediately see that fn and gm map even numbers into even numbers and odd numbers
into odd numbers. So the volumes can never be permuted so that an odd-numbered volume
would be in an even place or an even-numbered would be in an odd place. The observation
f ([1, n]) = [2000 − (n + 1), 2000] easily leads to f−1

n = f2000−n.
Now let n be even and m odd and n + m < 2000. Consider the combined mapping
f−1

n ◦gm ◦fn. If n < n+p ≤ n+m, then fn(n+p) = p ≤ m, gm(p) = m−p+1 < 2000−n
and f−1

n (m− p + 1) = f2000−n(m− p + 1) = 2000 + m− p + 1− 2000 + n = n + m + 1− p.
Because fn ([n + 1, n + m]) = [1, m], fn maps numbers p outside the interval [n+1, n+m]
into numbers outside the interval [1, m]; gm keeps these numbers fixed and f−1

n returns
fn(p) into p. So we have shown that for any interval [s, t] ⊂ E with s and t odd, there is
a function hs,t, combined of functions of the f type and g type such that hs,t reverses the
order of numbers in the interval [s, t] and is the identity function outside this interval.
The functions hs,t allow us to order the odd numbers in an arbitrary manner. If p1 ought
to be in position 1, then apply (if needed) h1,p1 ; if the number p2 which ought to be in
position 3 now is in position x, the x ≥ 3 and we may apply (if needed) h3,x. Continuing
this way, we eventually arrive at the desired order of the odd numbers.
To construct the second one of the desired operations, we have to obtain a counterpart for
hs,t for t < s. To this end, consider f−1

n ◦gm ◦fn for m+n > 2000. By the definition of fn,
fn(n+m−2000) = 2000+(n+m−2000)−n = m, and so fn[n+m−2000+1, n] = [m+
1, 2000] Consequently, f−1

n ◦gm◦fn keeps numbers in the interval [n+m−2000+1, n] (with
even endpoints) fixed. Since gm turns the order around in [1, m] and f−1

n = f2000−n maps
[1, m] onto the complement of [n+m−2000+1, n] in such a way that f2000−1(1) = n+1, the



order of numbers in the complement is reversed in the desired manner. – We have shown
that for odd s and t such that t < s there exists a function hs,t, combined of functions
of the f type and g type such that hs, t is the identity on the interval [t + 1, s − 1], but
reverses the order of the numbers outside this interval, when counting is started from s
and continued through over 2000 and 1 over to t, in other words modulo 2000.
To finish the proof, we show that two numbers in the even positions can be exchanged while
everything else is fixed. This clearly allows us to put the even numbers in an arbitrary order
without violating the order of the odd numbers. To achieve this, we take two even numbers
p and q, p < q, and consider the function φp,q = f2000+p−q ◦hp+1, p−1 ◦hq+1, p−1 ◦hp+1,q−1.
The innermost function hp+1,q−1 reverses the order on [p + 1, q − 1] and fixes everything
else, the next function hq+1, p−1 fixes numbers in [p, q], hp+1, p−1 fixes p and reverses the
order ( mod 2000) in E \ {p}, and f2000+p−q(p) = q. The two innermost components
of φp,q fix q, hp+1,p−1 takes q to a position x q − p steps ahead of p ( mod 2000) and
f2000+p−q = f−1

q−p moves x q − p positions back, i.e. to p. If p + k is between p and q, then
the innermost function maps it to q − k, the next one fixes q − k, the third function maps
q − k to p− (q − k − p) = 2p− q + k ( mod 2000), and f−1

q−p maps 2p− q + k back to p + k.
A similar reasoning shows that φp,q also fixes numbers in E \ [p, q].
Since both even and odd numbers have 1000! different permutations, the volumes can be
permuted into (1000!)2 different orders by using the given operations repeatedly.
Solution 3. We show by induction, that if in an ordered sequence one may exchange
two consecutive elements without changing the places of any other element, then any two
elements can be exchanged so that all other elements remain in place. We assume that
this is true for elements which are at most k steps away from each other in the sequence.
Assuming that a precedes b by k + 1 steps and that c is immediately behind a, the fol-
lowing sequence of exchanges is allowed: . . . , a, c, . . . , b, . . . → . . . , a, b, . . . , c, . . . →
. . . , b, a, . . . , c, . . . → . . . , b, c, . . . , a, . . .. By assumption, all elements in the places indi-
cated by three dots remain on their places, as does c.
If any two elements can be exchanged without violating the other elements, then the
elements in the sequence can be arranged to any order. One just gets the desired first
element to its place by (at most) one exchange, and if the first k elements already are in
their desired places, then the one wanted to be in place k + 1 is not among the first k
elements, and it can be moved to its place by at most one exchange, no violating the order
of the first k elements.
We now show, that any two volumes in consecutive odd places can be exchanged. The
volumes on top and in place 3 can be exchanged by operation (ii) applied to the three
topmost volumes. The volumes in places 2n + 1 and 2n + 3 can be exchanged by first
applying operation (i) to the 2n topmost volumes, which moves them in the bottom but
preserves their order, then applying (ii) to the three topmost volumes and finally operation
(i) to the 2000 − 2n topmost volumes. The last operation returns the 2n volumes to top
preserving the order and returns the remaining 2000−2n volumes to the bottom, preserving
the order, save the volumes in places 2n+1 and 2n+3, which have changed places. By the
general remarks above, it is now clear that operations (i) and (ii) can be used to arrange
the volumes in odd positions into any order while the volumes in even positions remain in
their places.



We still need to show, that a similar procedure is possible for volumes in even positions.
First of all, the volumes in positions 1 to 5 can be moved to order 5, 4, 3, 2, 1 by performing
operation (ii) to the five topmost volumes. Then it is possible to exchange the volumes in
positions 1 and 5 without changing anything else. So the volumes in even positions closest
to the top can be exchanged. For volumes on positions 2n and 2n+2 one can first perform
operation (i) to the 2n − 2 topmost volumes. The volumes in places 2n and 2n + 2 will
be taken to places 2 and 4, and they can be exchanged. Performing operation (i) to the
2000 − (2n − 1) topmost volumes then returns everything to their previous places, except
that the volumes in positions 2n and 2n + 2 have changed places. So all volumes in even
positions can be put into any order by using the operations (i) and (ii), and the total
number of possible orderings is (1000!)2.
(We note that operation (ii) can be replaced by a weaker operation: ”It is possible to turn
the order around for the 3 and 5 topmost volumes.”)


