
The 28th Nordic Mathematical Contest
Monday, 31 March 2014

Problem set with solutions

The time allowed is 4 hours. Each problem is worth 5 points.
The only permitted aids are writing and drawing tools.

Problem 1
Find all functions f : N → N (where N is the set of the natural numbers and is
assumed to contain 0), such that

f(x2)− f(y2) = f(x+ y)f(x− y),

for all x, y ∈ N with x ≥ y.

Problem 2
Given an equilateral triangle, find all points inside the triangle such that the
distance from the point to one of the sides is equal to the geometric mean of the
distances from the point to the other two sides of the triangle.

[The geometric mean of two numbers x and y equals √xy.]

Problem 3
Find all nonnegative integers a, b, c, such that

√
a+
√
b+
√
c =
√
2014.

Problem 4
A game is played on an n × n chessboard. At the beginning there are 99 stones
on each square. Two players A and B take turns, where in each turn the player
chooses either a row or a column and removes one stone from each square in the
chosen row or column. They are only allowed to choose a row or a column, if it
has least one stone on each square. The first player who cannot move, looses the
game. Player A takes the first turn. Determine all n for which player A has a
winning strategy.



Solutions

Solution 1
It is easily seen that both f(x) = x and f ≡ 0 solve the equation; we shall show
that there are no other solutions.

Setting x = y = 0 gives f(0) = 0; if only y = 0 we get f(x2) = (f(x))2, for all
admissible x. For x = 1 we now get f(1) = 0, or f(1) = 1.

Case 1. f(1) = 0: We have

f((x+ 1)2)− f(x2) = f(2x+ 1) · f(1) = 0 = (f(x+ 1))2 − (f(x))2,

so that f(x+ 1) = f(x) for all x, and it follows that f ≡ 0.

Case 2. f(1) = 1: Denote f(2) = a. We have

(f(2))2 − 1 = f(22)− f(12) = f(3) · f(1),
so that f(3) = a2 − 1. Obviously f(4) = a2, and x = 3, y = 1 now give

(a2 − 1)2 − 1 = a3,

so that a = 0 or a = 2, since a cannot be negative. If f(2) = 0, then f(3) = 0− 1,
which is impossible. Thus we have a = 2. The fact that f(n) = n for all n ∈ N is
now easy to establish using induction.

Solution 2
Let P be a point inside4ABC. Denote its orthogonal projections on AB,BC,CA
by X, Y, Z, respectively. We have ∠XPZ = ∠Y PX = 120◦.

Assume that PX2 = PY · PZ. Together with ∠XPZ = ∠Y PX = 120◦, this
gives 4XPZ ∼ 4Y PX (s-a-s). It means that ∠PZX = ∠PXY . The quadri-
laterals AXPZ and BY PX are circumscribed, and we get ∠PAX = ∠PBY , so
that ∠PAB+∠PBA = 60◦. We now have ∠APB = 120◦, meaning that P lies on
an arc inside the triangle, which is part of the circle through A, B, and the centre
of the triangle.

The above argument can be reversed to see that all points on this arc satisfy
the condition.

The set of all points as described is thus the union of three arcs, each of them
passing through two of the vertices and through the centre of the triangle.
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Remark: It is also possible to solve this by introducing a coordinate system and
deriving equations for the locus of P .



Solution 3
We start with a lemma:

Lemma. If p, q are nonnegative integers and √p +√q = r ∈ Q, then p and q
are squares of integers.

Proof of lemma: If r = 0, then p = q = 0. For r 6= 0, take the square of both
sides to get p + q + 2

√
pq = r2, which means that √pq ∈ Q, so that pq must be

the square of a rational number, and, being an integer, it must be the square of

an integer. Denote pq = s2, s ≥ 0. Then p =
s2

q
, and

r =
√
p+
√
q =

s
√
q
+
√
q,

which implies that
√
q =

s+ q

r
∈ Q, and it follows that q is a square. Then p must

also be a square.

Back to the problem: we can rewrite the equation as

a+ b+ 2
√
ab = 2014 + c− 2

√
2014c,

so that √
ab+

√
2014c ∈ Q.

The lemma now tells us that ab and 2014c need to be squares of integers. Since
2014 = 2 · 19 · 53, we must have c = 2014m2 for some nonnegative integer m.
Similarly, a = 2014k2, b = 2014l2. The equation now implies

k + l +m = 1,

so that the only possibilities are (2014, 0, 0), (0, 2014, 0), (0, 0, 2014).

Solution 4
Player A has a winning strategy if and only if n is odd.

First we prove that no matter how they play, the play will not end before the
board is empty. Let (i, j) denote the square in row i and column j, let ri denote
the number of times row i has been chosen when the game ends, and let cj denote
the same for columns. Assume by contradiction that there is a none empty square
(a, b) when no more moves are possible. Hence there is an empty square in row a,
let us say (a, c), and an empty square in column b, let us say (d, b). This shows
that ra + cb < 99, ra + cc = 99 and rd + cb = 99. But this leads to rd + cc > 99
which is impossible since there are exactly 99 stones on square (d, c) when the
game begins.

This shows that the game will end after n×n×99
99

= n×n moves since each player
removes 99 stones in each move. The number n× n has the same parity as n, and
hence A wins if n is odd and B wins if n is even no matter how they play.

Remark: It can by shown that player B has a winning strategy when n is even
in a very different way: If player B copies the choice of A, i.e. when A chooses row
m, B chooses row n −m, and the same for columns, then player B wins when n
is even.


