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Solution

Each problem is worth 5 points.

PROBLEM 1. Let (a,)n,>1 be a sequence with a; = 1 and

anpy1 = \‘Cln—F\/a‘i‘ %J

for all n > 1, where |z] denotes the greatest integer less than or equal to z. Find
all n < 2013 such that a, is a perfect square.

SOLUTION. We will show by induction that a, = 14 [%]| " |, which is equivalent
to agy = 1+ m? and agye1 = 1+ m(m + 1). Clearly this is true for a;.

If agpmy1 =1+ m(m + 1) then
Gomiz = |m>+m+ 1+ Vm2+m+1+14],

and since m + 3 < vVm?+m+1 < m+ 1 (easily seen by squaring), we get
Aogmia = (M*+m+1)+(m+1)=1+(m+ 1)~
And if as,, = 1 + m? then

a2m+1={m2+1+\/m27+1+a7

and here m < vVm?+1<m+1, 80 agpyr = (m?+1)+m=1+m(m+1).
Ifm>1thenm?<14+m?<(m+1)2?and m* <m?+m+1< (m+1)? soa,
cannot be a perfect square if n > 1. Therefore a; = 1 is the only perfect square in
the sequence.

PROBLEM 2. In a football tournament there are n teams, with n > 4, and each
pair of teams meets exactly once. Suppose that, at the end of the tournament,
the final scores form an arithmetic sequence where each team scores 1 more point
than the following team on the scoreboard. Determine the maximum possible score
of the lowest scoring team, assuming usual scoring for football games (where the
winner of a game gets 3 points, the loser 0 points, and if there is a tie both teams
get 1 point).

SOLUTION. Note that the total number of games equals the number of different
pairings, that is, n(n — 1)/2. Suppose the lowest scoring team ends with & points.
Then the total score for all teams is

(n—1)n
5
Some games must end in a tie, for otherwise, all team scores would be a multiple

of 3 and cannot be 1 point apart. Since the total score of a tie is only 2 points
compared to 3 points if one of the teams wins, we therefore know that
(n—1)n n(n —1)
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so nk < n(n — 1), and hence k < n — 1. It follows that the lowest scoring team
can score no more than n — 2 points.

We now show by induction that it is indeed possible for the lowest scoring team
to score n — 2 points.

The following scoreboard shows this is possible for n = 4:

— 3 1 115
0O — 1 3|4
1 1 — 113
1 0 1 —1|2
Now suppose we have a scoreboard for n teams labelled T,,_o, ..., T5,_3, where

team T; scores ¢ points. Keep the results among these teams unchanged while
adding one more team.

Write n = 3¢+ with r € {1, —1,0}, and let the new team tie with just one of the
original teams, lose against ¢ teams, and win against the rest of them. The new
team thus wins n—1— ¢ games, and gets 1+3(n—1—¢q) =3n—2—3¢ =2n—2+r
points.

Moreover, we arrange for the ¢ teams which win against the new team to form
an arithmetic sequence T}, Tj 3, ..., Tj13(q—1) = Tjin—r—3, o that each of them,
itself having gained three points, fills the slot vacated by the next one.

(i) If » = 1, then let the new team tie with team 7,,_5 and lose to each of the teams
Tn—17 Tn+27 cee 7Tn—1+n—r—3 - T2n—5-

Team 7T,,_» now has n—1 points and takes the place vacated by 7;,_;. At the other
end, T5,_5 now has 2n — 2 points, just one more than the previous top team 75, 3.
And the new team has 2n — 2 + r = 2n — 1 points, becoming the new top team.
The teams now have all scores from n — 1 up to 2n — 1.

(ii) If r = —1, then let the new team tie with team 75, 3 and lose to each of the
teams 15, o, Ty1, -, Toin—r—3 = Ton_4.

The old top team T5,,_3 now has 2n — 2 points, and its former place is filled by the
new team, which gets 2n —2+4r = 2n — 3 points. T5,,_4 now has 2n — 1 points and
is the new top team. So again we have all scores ranging from n — 1 up to 2n — 1.

(iii) If » = 0, then let the new team tie with team 7, o and lose to teams
Tnflv Tn+27 s 7Tn71+n7r73 = T2, 4.

Team T,,_» now has n — 1 points and fills the slot vacated by T,_;. At the top end,
T5,_4 now has 2n — 1 points, while the new team has 2n — 2 + r = 2n — 2 points,
and yet again we have all scores from n — 1 to 2n — 1.

This concludes the proof.

See next page for problem 3.



PROBLEM 3. Define a sequence (ng)k>0 by no = ny; = 1, and ng, = ny + ni_1 and
Noky1 = Ny for k > 1. Let further g, = ny/ng_q for each & > 1. Show that every
positive rational number is present exactly once in the sequence (gg)g>1-

SOLUTION. Clearly, all the numbers n, are positive integers. Moreover,

N2k N+ Ng_1
Qok = = =qr+ 17 (1)
Nok—1 Nk—1
and similarly,
n n N 1
_ Mok _ Tk F s S Y (2)
q2k+1 N2k4+1 ng qk

In particular, g, > 1 when £ is even, and ¢ < 1 when k£ > 3 is odd.

We will show the following by induction on t =2, 3, 4, .. .:

CLAIM: FEvery rational number r /s where r, s are positive integers with ged(r, s) =
1 and r 4+ s <t occurs precisely once among the numbers q,.

The claim is clearly true for ¢ = 2, since then r/s = 1/1 = 1 is the only possibility,
and ¢, is the only occurrence of 1 in the sequence.

Now, assume that v > 3 and that the claim holds for ¢t = v — 1. Let r and s be
positive integers with ged(r,s) =1 and r + s = u.

First, assume that r > s. We know that r/s = ¢, is only possible if m is even.
But
r r—s
- = Qo <
S

= Gk

by (1), and moreover, the latter equality holds for precisely one k according to the

induction hypothesis, since ged(r —s,s) =1 and (r—s)+s=r <t

Next, assume that r < s. We know that r/s = ¢, is only possible if m is odd. But
s 1 s—r 1

r
- =Qok+1 & — = = = —
S r q2k+1 r qk

by (2), and moreover, the latter equality holds for precisely one k according to the
induction hypothesis, since ged(s —r,7) =1 and (s —7) +r =5 < ¢,

See next page for problem 4.



PrROBLEM 4. Let ABC be an acute angled triangle, and H a point in its interior.
Let the reflections of H through the sides AB and AC be called H. and Hy,
respectively, and let the reflections of H through the midpoints of these same sides
be called H] and Hj, respectively. Show that the four points H,, H;, H., and H]
are concyclic if and only if at least two of them coincide or H lies on the altitude
from A in triangle ABC'

SOLUTION. If at least two of the four points H,, H}, H., and H. coincide, all
four are obviously concyclic. Therefore we may assume that these four points are
distinct.

Let P, denote the midpoint of segment H Hy,, P/ the midpoint of segment H H;, P,
the midpoint of segment H H,., and P! the midpoint of segment H H.

The triangle H H,H| being right-angled in H,, it follows that the perpendicular
bisector ¢, of the side H,Hj goes through the point P;. Since the segments P, P}
and HyH; are parallel and P/ is the midpoint of the side AC, we then conclude
that ¢, also goes through the circumcentre O of triangle ABC.

Similarly the perpendicular bisector ¢, of the segment H.H. also goes through O.
Hence the four points Hy, H;, H., and H. are concyclic if and only if also the
perpendicular bisector ¢ of the segment H;H! goes through the point O. Since
H{H! || PP, || BC, this is the case if and only if ¢ is the perpendicular bisector m
of the segment BC.

Let k denote the perpendicular bisector of the segment P, P’. Since the lines ¢ and
m are obtained from k by similarities of ratio 2 and centres H and A, respectively,
they coincide if and only if HA is parallel to m. Thus H,, H;, H., and H. are
concyclic if and only if H lies on the altitude from A in triangle ABC'.

c

Click to experiment with the figure in GeoGebra.


http://www.georgmohr.dk/nmcperm/probl/2013/sol.ggb

