
Solutions

Problem 1

When a0, a1, . . . , a1000 denote digits, can the sum of the 1001-digit numbers
a0a1 . . . a1000 and a1000a999 . . . a0 have odd digits only?

Solution. The answer is no.

The following diagram illustrates the calculation of the sum digit by digit.

a0 a1 . . . ai . . . a500 . . . a1000−i . . . a998 a999 a1000
a1000 a999 . . . a1000−i . . . a500 . . . ai . . . a2 a1 a0

s1001 s1000 s999 . . . s1000−i . . . s500 . . . si . . . s2 s1 s0

Thus si are the digits of the sum. The digit s1001 may be absent. We call column i
the column in the diagram with the digit si.

Assume that si is odd for i = 0, 1, . . . , 1000. By induction on i we prove that
a2i + a1000−2i is odd for i = 0, 1, . . . , 250. This implies that a2·250 + a1000−2·250 = 2a500
is odd, which is a contradiction. Here is the proof: Since s0 is odd, a0 + a1000 is
odd, so the statement is true for i = 0. Assume that a2i + a1000−2i is odd for some
i = 0, 1, . . . , 249. Since s1000−2i is odd and a2i + a1000−2i is odd, there is no carry
in column 1000 − 2i, so a2i+1 + a1000−(2i+1) ≤ 9. But then because s2i+1 is odd and
a2i+1 + a1000−(2i+1) ≤ 9, there is no carry in column 2i + 2. Hence a2i+2 + a1000−(2i+2)

is odd because s2i+2 is odd. This completes the induction step.

Problem 2

In a triangle ABC assume AB = AC, and let D and E be points on the extension of
segment BA beyond A and on the segment BC, respectively, such that the lines CD

and AE are parallel. Prove CD ≥ 4h

BC
CE, where h is the height from A in triangle

ABC. When does equality hold?

A

B C

D

E

h

Solution. From AE ‖ CD we get CD/AE = BC/BE,
whence

CD =
AE ·BC

BE · CE
CE . (1)

Since h is the shortest distance of A from the line BC,
we have AE ≥ h with equality when E is the foot of the
height, which, due to AB = AC, is the midpoint of BC.
Futhermore BE ·CE ≤ ((BE + CE)/2)2 = (BC/2)2 with equality when BE = CE,
which is equivalent to E being once more the midpoint of BC. Combining these
results we get from (1) the requested inequality with equality when E is the midpoint
of BC.
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Problem 3

Find all functions f such that

f(f(x) + y) = f(x2 − y) + 4yf(x)

for all real numbers x and y.

Solution. Substituting y = (x2 − f(x))/2 yields 2(x2 − f(x))f(x) = 0, so for each x
either f(x) = 0 or f(x) = x2. If f(x) = 0 one gets f(y) = f(x2 − y). In particular
f(y) = f(−y). If f(y) 6= 0, the last but one equation can be written y2 = (x2 − y)2.
Now, due to f(y) = f(−y), if f(y) 6= 0 also f(−y) 6= 0, so we have y2 = (x2 + y)2 as
well. Adding these equations gives 2x4 = 0, or x = 0. In conclusion, if f(y) 6= 0 for
some y then f(x) = 0 implies x = 0. Thus either f(x) = 0 for all x or f(x) = x2 for
all x. It is easily verified that both these functions satisfy the given equation.

Problem 4

Show that for any integer n ≥ 2 the sum of the fractions
1

ab
, where a and b are

relatively prime positive integers such that a < b ≤ n and a + b > n, equals
1

2
.

(Integers a and b are called relatively prime if the greatest common divisor of a and
b is 1.)

Solution. We prove this by induction. First observe that the statement holds for
n = 2 because a = 1 and b = 2 are the only numbers which satify the conditions.
Next we show that increasing n by 1 does not change the sum, so it remains equal to
1/2. To that end it suffices to show that the sum of the terms removed from the sum
equals the sum of the new terms added. All the terms in the sum for n− 1 remain in
the sum for n except the fractions 1/ab with a and b relatively prime, 0 < a < b ≤ n
and a+ b = n. On the other hand the new fractions added to the sum for n have the
form 1/an with 0 < a < n. So it suffices to show∑

0<a<n/2

gcd(a,n−a)=1

1

a(n− a)
=

∑
0<a<n

gcd(a,n)=1

1

an
.

Note that the terms in the sum on the right hand side can be grouped into pairs

1

an
+

1

(n− a)n
=

(n− a) + a

a(n− a)n
=

1

a(n− a)

because gcd(a, n) = gcd(n − a, n), so either both these terms are in the sum or
none of them is. No term is left out because if n is even and greater than 2 then
gcd(n/2, n) = n/2 > 1. So the right hand side is given by∑

0<a<n

gcd(a,n)=1

1

an
=

∑
0<a<n/2

gcd(a,n)=1

1

a(n− a)
=

∑
0<a<n/2

gcd(a,n−a)=1

1

a(n− a)
,

which is what we had to prove.
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