15th Nordic Mathematical Contest

Thursday March 29th, 2001

English version

Time allowed: 4 hours. Each problem is worth 5 points.

Problem 1. Let A be a finite collection of squares in a coordinate plane
such that each square in A has for its corners points of the form (m,n),
(m+1,n), (m,n+1) and (m+ 1,n + 1) for some integers m and n.

Show that there exists a subcollection B of A consisting of at least 25%
of all the squares in A such that no two distinct squares in B have a common
corner point.

Problem 2. Let f be a bounded real-valued function defined for all real
values such that the following condition is satisfied for every real number x:

fle+3)+fla+3)=f@)+flz+3)

Show that f is periodic. (A function f is called periodic, if there exists a
positive number k, such that f(z + k) = f(x) for every real number z).

Problem 3. Determine the number of real roots in the equation

$8—$7+21‘6—21’5+3J)4—3$3+4$2—4(E+gZO

Problem 4. Let ABCDEF be a convex hexagon in which each of the
diagonals AD, BE and C'F divides the hexagon in two quadrilaterals with
equal areas.

Show that AD, BE and C'F pass through the same point.



Solution 1. Let G be the set of all the squares with corner points of the
form (m,n), (m+ 1,n), (m,n+1) and (m + 1,n + 1) for some integers m
and n. A is a subset of G. Let’s assign to each of the squares in G one
af the numbers 1, 2, 3 and 4 in the following way: In every second row we
assign the squares alternately the integers 1 and 2. The squares just below
the squares with a 1-integer we assign the integer 3. The rest of the squares
we assign the integer 4.

Let A; be the subset of A containing the squares numbered i (i = 1,2, 3,4).
No two distinct squares of the set A; have a common corner. Hence the
biggest of the sets A;, Ay, A3 and A4 can be choosen as the set B.

Solution 2. We use the condition f(z) = f(z+ 3)+ f(z +3) — f(z + 2)
several times for different x

f@)=flx+3)+fla+l) - fla+3)
= (fla+ )+ et —f @+ )+ (fle+g)+/(z+1) —f(z+5)) = f(z+)
=(fla+ )+ @+~ fa+))+f@+2) - fla+ D)+ fla+1) - flz+3)
=2f(r+1) = flz+ )+ (fla+g) + fla+3) = fla+3) - flz+3)
=2f(x+1) - fla+3)+(fe+3)+ fl@+3)— flz+2) — flz+3)
=2f(x+1)— f(z+2)

Hence

Telescoping now gives

n

flat+n) = f(z) =) ((fle+i) = fle+i=1) =n(flz+1) = f(z))

i=1

From this we see that f can be bounded only if f(z + 1) — f(z) =0 i.e.
f is periodic with a period of 1.

Solution 3. 2% — 27+ 2% — 225+ 32* —32® + 42 — 2+ 2 = 2(z — 1)(2% +
20 + 32> +4)+ 5. Only if 0 < z < 1 is z(z — 1) negative and that’s
neccessary, if z is a root in the equation. z(z — 1) > —i and for 0 <z < 1
we have z(z —1)(2% + 22* + 322 +4) + 2 > —1(1+2+3+4) + 2 = 0. Thus
the equation has no real roots.



Solution 4. Assume that the three diagonals AD, BE and DF do not
have any point in common. Let AD and BF intersect in R, BE and CF
intersect in P, CF and AD intersect in (). The points R and @ divide the
diagonal AD in three pieces a, d and g. g is the linesegment R() and « is the
linesegment with endpoint R. The points P and R divide the diagonal BE
in three pieces b, e and h. h is the linesegment PR and b is the linesegment
with endpoint R. Similarly the points P and @) divide the diagonal C'F' in
three pieces ¢, f and j. 7 is the linesegment P(Q and c is the linesegment
with endpoint Q.

We now look more closely on the areas

a(ARB) = %a(ABCDEF) — a(BCDR) = o(DRE)
Hence
ab=(d+ g)(e+ h)
Similarly we get

cd=(f+7j)(a+yg)

ef =(b+h)(c+7)
Multiplying these equalities we get
abedef = (a+ g)(b+ h)(c+ 7)(d+ g)(e + h)(f + J)

Since a, b, ¢, d, e and f are positive and g, h and j are non-negative numbers,
every factor on the left side is less or equal than the corresponding factor on
the right side. Hence ¢ = h = j = 0. Thus the three diagonals pass through
the same point.



