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Solutions

Problem 1: By entering z = y = 0, we find that 2f(0) = 4f(0), hence, f(0) = 0.

Next, by entering y = nx for a natural number n, we get
fl(n+1)x)=2f(z) +2f(nz) — f((n — 1)x).

Finding f(nz) for n = 1,2,... we see that f(nz) = n*f(x). To prove this, use
induction. It clearly holds for n = 1. By using f(kz) = k*f(z) for k < n, we get

F(n+ 1)) = 2f(x) +2f(nz) = [((n— 1))
= 2427~ (n—1))f(2)
= (n+ 1)2(2).

Hence, f(nz) = n?f(x). For x = 1/q, we get f(1) = f(qx) = ¢*f(x), so f(1/q) =
f(1)/¢*. This makes f(p/q) = p*f(1/q) = (p/q)* (1), hence, f(z) = az® for some

rational number a.

Finally, if f(z) = az?, f(z+y)+ f(z —y) = a(z+y)* +a(z —y)? = 2a2® + 2ay? =
2f(x) +2f(y), so f(z) = az? is a solution.

Problem 2: We know that PA- PB = PC-PD = PE - PF. Furthermore, M; P
being perpendicular to the corde C'D, P must be the midpoint of C'D: hence,
PC = PD. Similarly, we get PE = PF. Thus, we find PC = PD = PE =
PF=+PA-PB.

Now, as (', D, F, and F all lie on a circle with centre in P, triangles C DFE etc.
must have a straight angle one side being a diagonal. With all angles of CDEF
straight, it is a rectangle.

Problem 3: a) Assume that z4,...,z, is such a sequence. Then, z;+---+x, =
n(n + 1)/2. This sum should be divisible by n, which is only the case if n is odd,
(n 4 1)/2 being integral: n = 2m makes n(n +1)/2 = m(2m + 1) =2m* + m =
m mod 2m.

With n = 2m +1 > 1, we demand that n — 1 = 2m divide z; + -+ + z,_1.

However,

1+t = (m+D)2m+1) —z,

= m+1—2x,_1 mod 2m,



sol <z, 1<nmakesz, =m+1.
Next, demand that n — 2 = 2m — 1 divide xy + - - - + x,_. Hence, as

$1—|-"“|‘$n—2 — (m—|—1)(2m—|—1)—$n—$n—1

= m+1—2x,_1 mod2m — 1,

we must also have z,,_.1 =m+1 mod 2m—1.1fn > 3, weget m+1—(2m—-1) < 1
and m+1+4+(2m—1) >2m+1 =n,so x,-1 = m+ 1 is the only possible positive
value not exceeding n. However, this makes z,, = z,_1, which contradicted our
initial assumption.

What remains is the cases n = 1,3. For n = 1, z; = 1. For n = 3, 3 = 2 and
z1,22 = 1 and 3 (in any order) gives a solution. Hence, n = 1,3 are the only
possibilities.

b) Let z; = 1. Let us then proceed recursively.

Assume that zq,...,2,_1 have been chosen, their sum being A. Let m be the
smallest positive integer not yet used. If we set z,,41 = m, we have two restrictions
on T,:

A4z, =0modnand A4+ =z, +m=0modn + 1.

With n and n+1 relatively prime, the Chinese reminder theorem provides us with
a solution in terms of z,, mod n(n + 1). By adding a sufficiently high multiple of
n(n + 1), we can always find such a number which has not yet been used. This
extends the sequence with two more x’s.

Problem 4: Drawing the Pascal triangle modulo 2,

one may observe that row 1 contains two copies of row 0, rows 2 to 3 contain two

copies of rows 0 to 1, etc. In order to prove this, it suffices to prove that (2;) =1
k

only if i = 0 or 2%; using <n;1) = (pil) + (;), the triangles below (2;) and @k)
do not meet until at row 2**!, hence, are copies of rows 0 to 2¥ — 1. Alternatively,

one may use

()= 2 00 =6)6) GG
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If N, is the count, n = 2¥ + m, m < 2%, we then get N, = 2N,,. As Ny = 1,
this makes N, a power of two, the power being the number of 1’s in the binary
expansion of n.

Proving that (2;) = 1 only for p = 0, 2* may be done in several ways. For one, one
may use that (2kp_1) = 1 for all p (this would follow from the above induction),

which determines (2;) Another method is by counting the factors of 2. The factor
2%1 is divisible by 2 a total of 2% — 1 times. The p! may be divided by 2 a total of
|p/2] +|p/4] +- - - times and similarly for (2% —p)!; 28 /2" > |p/2 | + [ (2% —p)/2¢]
with equality only if there is no rounding down, so the total number of factors
of 2 occuring in numerator and denominator of (2;) is zero only if there is no

rounding down in the previous. This happens only if p = 0 or 2F.

Alternative solution: Let A(n) = k where 2%|n! but 28+' /|n!. As above,
An) =2, n/2¢]. I n = E?:o a;2’, a; € {0,1}, then we find that

k

An) = Z anj_i = Zaj(Qj —1)=n-T(n)

1<i<i<h i=0
where T'(n) = YF_ a; is the sum of the binary digits.

Now, we see that (p‘;q) is odd if and only if A(p + q) = A(p) + A(q) which is
equivalent to T'(p+¢q) = T'(p) + T'(q). This certainly occures if p = E?:o P20, q=
2520 q;2? where p;, q; € {0,1}, p;+¢q; < 2, as this makes the binary representation
for p+q = Z?:o(l’j + g;)27. We must then prove that otherwise, T(p + q) <
T(p) + T(q). Tt suffices to prove this for ¢ = 2 and then use this result for each
q = 1.

Let p be as above, ¢ = 2. If [ > kor py = 0, we get T(p+q) = T(p) +1 =
T(p) + T(q). Otherwise, we get p+q= (p—2")+p*'. As T(p—2") = T(p) — 1,
induction yields T'(p + q) < T'(p) < T'(p) + T(q).

k_on;20 fixed, we get ( ) odd exactly in the cases

Now, given p+q=mn,n =37, pfq
where p and ¢ are made from splitting the 2/ for which n; = 1 into two groups.

As there are T'(n) such terms, this can be done in exactly 2T(") different ways.



