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Proposed Solutions

1. Let

a =
n∑

k=0

ak10k, 0 ≤ ak ≤ 9, for 0 ≤ k ≤ n − 1, 1 ≤ an ≤ 9.

Set

f(a) =
n∏

k=0

ak.

Since
f(a) =

25
8

a − 211 ≥ 0,

a ≥ 8
25

· 211 =
1688
25

> 66. Also, f(a) is an integer, and gcf(8, 25) = 1, so 8 | a. On the
other hand,

f(a) ≤ 9n−1an ≤ 10nan ≤ a.

So
25
8

a − 211 ≤ a

or a ≤ 8
17

· 211 =
1688
17

< 100. The only multiples of 8 between 66 and 100 are 72, 80, 88,
and 96. Now 25 · 9 − 211 = 17 = 7 · 2, 25 · 10− 211 = 39 6= 8 · 0, 25 · 11− 211 = 64 = 8 · 8,
and 25 · 12 − 211 = 89 6= 9 · 6. So 72 and 88 are the numbers asked for.

2. 1st Solution. The inequality is equivalent to

2
(
a2(a + b)(a + c) + b2(b + c)(b + a) + c2(c + a)(c + b)

) ≥ (a + b + c)(a + b)(b + c)(c + a).

The left hand side can be factored as 2(a + b + c)(a3 + b3 + c3 + abc). Because a + b + c is
positive, the inequality is equivalent to

2(a3 + b3 + c3 + abc) ≥ (a + b)(b + c)(c + a).

After expanding the right hand side and subtracting 2abc, we get the inequality

2(a3 + b3 + c3) ≥ (a2b + b2c + c2a) + (a2c + b2a + c2b),

still equivalent to the original one. But we now have two instances of the well-known
inequality x3 + y3 + z3 ≥ x2y + y2z + z2x or x2(x− y)+ y2(y − z) + z2(z − x) ≥ 0. [Proof:
We may assume x ≥ y, x ≥ z. If y ≥ z, write z − x = z − y + y − z to obtain the
equivalent and true inequality (y2 − z2)(y − z) + (x2 − z2)(x − y) ≥ 0, if z ≥ y, similarly
write x − y = x − z + z − y, and get (x2 − z2)(x − z) + (x2 − y2)(z − y) ≥ 0.]
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2nd Solution. The original inequality is symmetric in a, b, c. So we may assume a ≥ b ≥ c.
So

1
b + c

≥ 1
c + a

≥ 1
a + b

.

The Chebyshev inequality gives

2a2

b + c
+

2b2

c + a
+

2c2

a + b
≥ 2

3
(a2 + b2 + c2)

(
1

b + c
+

1
c + a

+
1

a + b

)
.

The power mean inequality gives

a2 + b2 + c2

3
≥

(
a + b + c

3

)2

.

So
2a2

b + c
+

2b2

c + a
+

2c2

a + b
≥ 2

9
(a + b + c)2

(
1

b + c
+

1
c + a

+
1

a + b

)
.

To complete the proof, we have to show that

2(a + b + c)
(

1
b + c

+
1

c + a
+

1
a + b

)
≥ 9.

But this is equivalent to the harmonic–arithmetic mean inequality

3
1
x

+
1
y

+
1
z

≤ x + y + z

3
,

with x = a + b, y = b + c, z = c + a.

3. Assume the number of girls to be g and the number of boys b. Call a position clockwise
fairly strong, if, counting clockwise, the number of girls always exceeds the number of
boys. No girl immediately followed by a boy has a fairly strong position. But no pair
consisting of a girl and a boy following her has any effect on the fairly strongness of the
other positions. So we may remove all such pairs. so we are left with at least g − b girls,
all in a clockwise fairly strong position. A similar count of counterclockwise fairly strong
positions can be given, yielding at least g − b girls in such a position. Now a sufficient
condition for the existence of a girl in a strong position is that the sets consisting of the
girls in clockwise and counterclockwise fairly strong position is nonempty. This is certainly
true if 2(g − b) > g, or g > 2b. With the numbers in the problem, this is true.
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4. Draw the tangent CH to C2 at C. By the theorem
of the angle between a tangent and chord, the angles
ABH and ACH both equal the angle at A between
BA and the common tangent of the circles at A. But
this means that the angles ABH and ACH are equal,
and CH‖BE. But this means that C is the midpoint
of the arc DE. This again implies the equality of the
angles CEB and BAE, as well as CE = CD. So the
triangles AEC, CEB, having also a common angle
ECB, are similar. So

CB

CE
=

CE

AC
,

and CB·AC = CE2 = CD2. But by the power of a point theorem, CB·CA = CG2 = CF 2.
We have in fact proved CD = CE = CF = CG, so the four points are indeed concyclic.


