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Problems

Problem 1. Let ABC be a triangle with incentre I. A point P in the interior of the triangle satisfies

∠PBA + ∠PCA = ∠PBC + ∠PCB.

Show that AP ≥ AI, and that equality holds if and only if P = I.

Problem 2. Let P be a regular 2006-gon. A diagonal of P is called good if its endpoints divide the
boundary of P into two parts, each composed of an odd number of sides of P . The sides of P are also
called good .

Suppose P has been dissected into triangles by 2003 diagonals, no two of which have a common
point in the interior of P . Find the maximum number of isosceles triangles having two good sides that
could appear in such a configuration.

Problem 3. Determine the least real number M such that the inequality

∣

∣ ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)
∣

∣ ≤ M
(

a2 + b2 + c2
)2

holds for all real numbers a, b and c.

Problem 4. Determine all pairs (x, y) of integers such that

1 + 2x + 22x+1 = y2.

Problem 5. Let P (x) be a polynomial of degree n > 1 with integer coefficients and let k be a positive
integer. Consider the polynomial Q(x) = P (P (. . . P (P (x)) . . .)), where P occurs k times. Prove that
there are at most n integers t such that Q(t) = t.

Problem 6. Assign to each side b of a convex polygon P the maximum area of a triangle that has b
as a side and is contained in P . Show that the sum of the areas assigned to the sides of P is at least
twice the area of P .
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Solutions

Problem 1.

Let ABC be a triangle with incentre I. A point P in the interior of the triangle satisfies

∠PBA + ∠PCA = ∠PBC + ∠PCB.

Show that AP ≥ AI, and that equality holds if and only if P = I.

Solution. Let ∠A = α, ∠B = β, ∠C = γ. Since ∠PBA + ∠PCA + ∠PBC + ∠PCB = β + γ, the
condition from the problem statement is equivalent to ∠PBC + ∠PCB = (β + γ)/2, i. e. ∠BPC =
90◦ + α/2.

On the other hand ∠BIC = 180◦ − (β + γ)/2 = 90◦ + α/2. Hence ∠BPC = ∠BIC, and since P
and I are on the same side of BC, the points B, C, I and P are concyclic. In other words, P lies on
the circumcircle ω of triangle BCI.

A

I

P

B

C

M

ω

Ω

Let Ω be the circumcircle of triangle ABC. It is a well-known fact that the centre of ω is the
midpoint M of the arc BC of Ω. This is also the point where the angle bisector AI intersects Ω.

From triangle APM we have

AP + PM ≥ AM = AI + IM = AI + PM.

Therefore AP ≥ AI. Equality holds if and only if P lies on the line segment AI, which occurs if and
only if P = I.

Problem 2.

Let P be a regular 2006-gon. A diagonal of P is called good if its endpoints divide the boundary of P
into two parts, each composed of an odd number of sides of P . The sides of P are also called good .
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Suppose P has been dissected into triangles by 2003 diagonals, no two of which have a common
point in the interior of P . Find the maximum number of isosceles triangles having two good sides that
could appear in such a configuration.

Solution 1. Call an isosceles triangle good if it has two odd sides. Suppose we are given a dissection
as in the problem statement. A triangle in the dissection which is good and isosceles will be called
iso-good for brevity.

Lemma. Let AB be one of dissecting diagonals and let L be the shorter part of the boundary of the
2006-gon with endpoints A, B. Suppose that L consists of n segments. Then the number of iso-good
triangles with vertices on L does not exceed n/2.

Proof. This is obvious for n = 2. Take n with 2 < n ≤ 1003 and assume the claim to be true for every
L of length less than n. Let now L (endpoints A, B) consist of n segments. Let PQ be the longest
diagonal which is a side of an iso-good triangle PQS with all vertices on L (if there is no such triangle,
there is nothing to prove). Every triangle whose vertices lie on L is obtuse or right-angled; thus S
is the summit of PQS. We may assume that the five points A,P, S,Q,B lie on L in this order and
partition L into four pieces LAP , LPS, LSQ, LQB (the outer ones possibly reducing to a point).

By the definition of PQ, an iso-good triangle cannot have vertices on both LAP and LQB. Therefore
every iso-good triangle within L has all its vertices on just one of the four pieces. Applying to each
of these pieces the induction hypothesis and adding the four inequalities we get that the number of
iso-good triangles within L other than PQS does not exceed n/2. And since each of LPS, LSQ consists
of an odd number of sides, the inequalities for these two pieces are actually strict, leaving a 1/2 + 1/2
in excess. Hence the triangle PSQ is also covered by the estimate n/2. This concludes the induction
step and proves the lemma. �

The remaining part of the solution in fact repeats the argument from the above proof. Consider
the longest dissecting diagonal XY . Let LXY be the shorter of the two parts of the boundary with
endpoints X, Y and let XY Z be the triangle in the dissection with vertex Z not on LXY . Notice
that XY Z is acute or right-angled, otherwise one of the segments XZ, Y Z would be longer than XY .
Denoting by LXZ , LY Z the two pieces defined by Z and applying the lemma to each of LXY , LXZ ,
LY Z we infer that there are no more than 2006/2 iso-good triangles in all, unless XY Z is one of them.
But in that case XZ and Y Z are good diagonals and the corresponding inequalities are strict. This
shows that also in this case the total number of iso-good triangles in the dissection, including XY Z,
is not greater than 1003.

This bound can be achieved. For this to happen, it just suffices to select a vertex of the 2006-gon
and draw a broken line joining every second vertex, starting from the selected one. Since 2006 is even,
the line closes. This already gives us the required 1003 iso-good triangles. Then we can complete the
triangulation in an arbitrary fashion.

Problem 3.

Determine the least real number M such that the inequality

∣

∣ ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)
∣

∣ ≤ M
(

a2 + b2 + c2
)2

holds for all real numbers a, b and c.

Solution. We first consider the cubic polynomial

P (t) = tb(t2 − b2) + bc(b2 − c2) + ct(c2 − t2).

It is easy to check that P (b) = P (c) = P (−b − c) = 0, and therefore

P (t) = (b − c)(t − b)(t − c)(t + b + c),
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since the cubic coefficient is b − c. The left-hand side of the proposed inequality can therefore be
written in the form

|ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)| = |P (a)| = |(b − c)(a − b)(a − c)(a + b + c)|.

The problem comes down to finding the smallest number M that satisfies the inequality

|(b − c)(a − b)(a − c)(a + b + c)| ≤ M · (a2 + b2 + c2)2. (1)

Note that this expression is symmetric, and we can therefore assume a ≤ b ≤ c without loss of
generality. With this assumption,

|(a − b)(b − c)| = (b − a)(c − b) ≤
(

(b − a) + (c − b)

2

)2

=
(c − a)2

4
, (2)

with equality if and only if b − a = c − b, i.e. 2b = a + c. Also
(

(c − b) + (b − a)

2

)2

≤ (c − b)2 + (b − a)2

2
,

or equivalently,
3(c − a)2 ≤ 2 · [(b − a)2 + (c − b)2 + (c − a)2], (3)

again with equality only for 2b = a + c. From (2) and (3) we get

|(b − c)(a − b)(a − c)(a + b + c)|

≤ 1

4
· |(c − a)3(a + b + c)|

=
1

4
·
√

(c − a)6(a + b + c)2

≤ 1

4
·

√

(

2 · [(b − a)2 + (c − b)2 + (c − a)2]

3

)3

· (a + b + c)2

=

√
2

2
·





4

√

(

(b − a)2 + (c − b)2 + (c − a)2

3

)3

· (a + b + c)2





2

.

By the weighted AM-GM inequality this estimate continues as follows:

|(b − c)(a − b)(a − c)(a + b + c)|

≤
√

2

2
·
(

(b − a)2 + (c − b)2 + (c − a)2 + (a + b + c)2

4

)2

=
9
√

2

32
· (a2 + b2 + c2)2.

We see that the inequality (1) is satisfied for M = 9

32

√
2, with equality if and only if 2b = a + c and

(b − a)2 + (c − b)2 + (c − a)2

3
= (a + b + c)2.

Plugging b = (a + c)/2 into the last equation, we bring it to the equivalent form

2(c − a)2 = 9(a + c)2.

The conditions for equality can now be restated as

2b = a + c and (c − a)2 = 18b2.

Setting b = 1 yields a = 1− 3

2

√
2 and c = 1+ 3

2

√
2. We see that M = 9

32

√
2 is indeed the smallest con-

stant satisfying the inequality, with equality for any triple (a, b, c) proportional to
(

1 − 3

2

√
2, 1, 1 + 3

2

√
2
)

,
up to permutation.
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Comment. With the notation x = b−a, y = c− b, z = a− c, s = a+ b+ c and r2 = a2 + b2 + c2, the inequality
(1) becomes just |sxyz| ≤ Mr4 (with suitable constraints on s and r). The original asymmetric inequality turns
into a standard symmetric one; from this point on the solution can be completed in many ways. One can e.g.
use the fact that, for fixed values of

∑

x and
∑

x2, the product xyz is a maximum/minimum only if some
of x, y, z are equal, thus reducing one degree of freedom, etc. A specific attraction of the problem is that the
maximum is attained at a point (a, b, c) with all coordinates distinct.

Problem 4.

Determine all pairs (x, y) of integers such that

1 + 2x + 22x+1 = y2.

Solution. If (x, y) is a solution then obviously x ≥ 0 and (x,−y) is a solution too. For x = 0 we get
the two solutions (0, 2) and (0,−2).

Now let (x, y) be a solution with x > 0; without loss of generality confine attention to y > 0. The
equation rewritten as

2x(1 + 2x+1) = (y − 1)(y + 1)

shows that the factors y − 1 and y + 1 are even, exactly one of them divisible by 4. Hence x ≥ 3 and
one of these factors is divisible by 2x−1 but not by 2x. So

y = 2x−1m + ǫ, m odd, ǫ = ±1. (1)

Plugging this into the original equation we obtain

2x
(

1 + 2x+1
)

=
(

2x−1m + ǫ
)2 − 1 = 22x−2m2 + 2xmǫ,

or, equivalently

1 + 2x+1 = 2x−2m2 + mǫ.

Therefore

1 − ǫm = 2x−2(m2 − 8). (2)

For ǫ = 1 this yields m2 − 8 ≤ 0, i.e., m = 1, which fails to satisfy (2).

For ǫ = −1 equation (2) gives us

1 + m = 2x−2(m2 − 8) ≥ 2(m2 − 8),

implying 2m2 − m − 17 ≤ 0. Hence m ≤ 3; on the other hand m cannot be 1 by (2). Because m is
odd, we obtain m = 3, leading to x = 4. From (1) we get y = 23. These values indeed satisfy the
given equation. Recall that then y = −23 is also good. Thus we have the complete list of solutions
(x, y): (0, 2), (0,−2), (4, 23), (4,−23).

Problem 5.

Let P (x) be a polynomial of degree n > 1 with integer coefficients and let k be a positive integer.
Consider the polynomial Q(x) = P (P (. . . P (P (x)) . . .)), where P occurs k times. Prove that there are
at most n integers t such that Q(t) = t.
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Solution. The claim is obvious if every integer fixed point of Q is a fixed point of P itself. For the
sequel assume that this is not the case. Take any integer x0 such that Q(x0) = x0, P (x0) 6= x0 and
define inductively xi+1 = P (xi) for i = 0, 1, 2, . . . ; then xk = x0.

It is evident that

P (u) − P (v) is divisible by u − v for distinct integers u, v. (1)

(Indeed, if P (x) =
∑

aix
i then each ai(u

i − vi) is divisible by u − v.) Therefore each term in the chain
of (nonzero) differences

x0 − x1, x1 − x2, . . . , xk−1 − xk, xk − xk+1 (2)

is a divisor of the next one; and since xk − xk+1 = x0 − x1, all these differences have equal absolute val-
ues. For xm = min(x1, . . . , xk) this means that xm−1 − xm = −(xm − xm+1). Thus xm−1 = xm+1(6= xm).
It follows that consecutive differences in the sequence (2) have opposite signs. Consequently, x0, x1, x2, . . .
is an alternating sequence of two distinct values. In other words, every integer fixed point of Q is a
fixed point of the polynomial P (P (x)). Our task is to prove that there are at most n such points.

Let a be one of them so that b = P (a) 6= a (we have assumed that such an a exists); then a = P (b).
Take any other integer fixed point α of P (P (x)) and let P (α) = β, so that P (β) = α; the numbers α
and β need not be distinct (α can be a fixed point of P ), but each of α, β is different from each of a, b.
Applying property (1) to the four pairs of integers (α, a), (β, b), (α, b), (β, a) we get that the numbers
α − a and β − b divide each other, and also α − b and β − a divide each other. Consequently

α − b = ±(β − a), α − a = ±(β − b). (3)

Suppose we have a plus in both instances: α − b = β − a and α − a = β − b. Subtraction yields
a − b = b − a, a contradiction, as a 6= b. Therefore at least one equality in (3) holds with a minus sign.
For each of them this means that α + β = a + b; equivalently a + b − α − P (α) = 0.

Denote a + b by C. We have shown that every integer fixed point of Q other that a and b is a root
of the polynomial F (x) = C − x − P (x). This is of course true for a and b as well. And since P has
degree n > 1, the polynomial F has the same degree, so it cannot have more than n roots. Hence the
result.

Problem 6.

Assign to each side b of a convex polygon P the maximum area of a triangle that has b as a side and
is contained in P . Show that the sum of the areas assigned to the sides of P is at least twice the area
of P .

Solution 1.

Lemma. Every convex (2n)-gon, of area S, has a side and a vertex that jointly span a triangle of area
not less than S/n.

Proof. By main diagonals of the (2n)-gon we shall mean those which partition the (2n)-gon into two
polygons with equally many sides. For any side b of the (2n)-gon denote by ∆b the triangle ABP
where A,B are the endpoints of b and P is the intersection point of the main diagonals AA′, BB′.
We claim that the union of triangles ∆b, taken over all sides, covers the whole polygon.

To show this, choose any side AB and consider the main diagonal AA′ as a directed segment. Let
X be any point in the polygon, not on any main diagonal. For definiteness, let X lie on the left side
of the ray AA′. Consider the sequence of main diagonals AA′, BB′, CC ′, . . . , where A,B,C, . . . are
consecutive vertices, situated right to AA′.

The n-th item in this sequence is the diagonal A′A (i.e. AA′ reversed), having X on its right side.
So there are two successive vertices K,L in the sequence A,B,C, . . . before A′ such that X still lies
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to the left of KK ′ but to the right of LL′. And this means that X is in the triangle ∆ℓ′ , ℓ′ = K ′L′.
Analogous reasoning applies to points X on the right of AA′ (points lying on main diagonals can be
safely ignored). Thus indeed the triangles ∆b jointly cover the whole polygon.

The sum of their areas is no less than S. So we can find two opposite sides, say b = AB and
b′ = A′B′ (with AA′, BB′ main diagonals) such that [∆b] + [∆b′ ] ≥ S/n, where [· · · ] stands for the
area of a region. Let AA′, BB′ intersect at P ; assume without loss of generality that PB ≥ PB′.
Then

[ABA′] = [ABP ] + [PBA′] ≥ [ABP ] + [PA′B′] = [∆b] + [∆b′ ] ≥ S/n,

proving the lemma. �

Now, let P be any convex polygon, of area S, with m sides a1, . . . , am. Let Si be the area of the
greatest triangle in P with side ai. Suppose, contrary to the assertion, that

m
∑

i=1

Si

S
< 2.

Then there exist rational numbers q1, . . . , qm such that
∑

qi = 2 and qi > Si/S for each i.

Let n be a common denominator of the m fractions q1, . . . , qm. Write qi = ki/n; so
∑

ki = 2n.
Partition each side ai of P into ki equal segments, creating a convex (2n)-gon of area S (with some
angles of size 180◦), to which we apply the lemma. Accordingly, this refined polygon has a side b and
a vertex H spanning a triangle T of area [T ] ≥ S/n. If b is a piece of a side ai of P, then the triangle
W with base ai and summit H has area

[W ] = ki · [T ] ≥ ki · S/n = qi · S > Si,

in contradiction with the definition of Si. This ends the proof.

Solution 2. As in the first solution, we allow again angles of size 180◦ at some vertices of the convex
polygons considered.

To each convex n-gon P = A1A2 . . . An we assign a centrally symmetric convex (2n)-gon Q with

side vectors ±−−−−→
AiAi+1, 1 ≤ i ≤ n. The construction is as follows. Attach the 2n vectors ±−−−−→

AiAi+1 at

a common origin and label them
−→
b1,

−→
b2, . . . ,

−→
b2n in counterclockwise direction; the choice of the first

vector
−→
b1 is irrelevant. The order of labelling is well-defined if P has neither parallel sides nor angles

equal to 180◦. Otherwise several collinear vectors with the same direction are labelled consecutively−→
bj,

−−→
bj+1, . . . ,

−−→
bj+r. One can assume that in such cases the respective opposite vectors occur in the

order −−→
bj ,−

−−→
bj+1, . . . ,−

−−→
bj+r, ensuring that

−−−→
bj+n = −−→

bj for j = 1, . . . , 2n. Indices are taken cyclically
here and in similar situations below.

Choose points B1, B2, . . . , B2n satisfying
−−−−−→
BjBj+1 =

−→
bj for j = 1, . . . , 2n. The polygonal line Q =

B1B2 . . . B2n is closed, since
∑

2n
j=1

−→
bj =

−→
0 . Moreover, Q is a convex (2n)-gon due to the arrangement

of the vectors
−→
bj , possibly with 180◦-angles. The side vectors of Q are ±−−−−→

AiAi+1, 1 ≤ i ≤ n. So

in particular Q is centrally symmetric, because it contains as side vectors
−−−−→
AiAi+1 and −−−−−→

AiAi+1 for
each i = 1, . . . , n. Note that BjBj+1 and Bj+nBj+n+1 are opposite sides of Q, 1 ≤ j ≤ n. We call Q
the associate of P.

Let Si be the maximum area of a triangle with side AiAi+1 in P, 1 ≤ i ≤ n. We prove that

[B1B2 . . . B2n] = 2
n

∑

i=1

Si (1)

and

[B1B2 . . . B2n] ≥ 4 [A1A2 . . . An] . (2)

It is clear that (1) and (2) imply the conclusion of the original problem.
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Lemma. For a side AiAi+1 of P, let hi be the maximum distance from a point of P to line AiAi+1,

i = 1, . . . , n. Denote by BjBj+1 the side of Q such that
−−−−→
AiAi+1 =

−−−−−→
BjBj+1. Then the distance be-

tween BjBj+1 and its opposite side in Q is equal to 2hi.

Proof. Choose a vertex Ak of P at distance hi from line AiAi+1. Let u be the unit vector perpendicular
to AiAi+1 and pointing inside P. Denoting by x · y the dot product of vectors x and y, we have

h = u · −−−→AiAk = u · (−−−−→AiAi+1 + · · · + −−−−−→
Ak−1Ak) = u · (−−−−→AiAi−1 + · · · + −−−−−→

Ak+1Ak).

In Q, the distance Hi between the opposite sides BjBj+1 and Bj+nBj+n+1 is given by

Hi = u · (−−−−−→BjBj+1 + · · · + −−−−−−−−−→
Bj+n−1Bj+n) = u · (−→bj +

−−→
bj+1 + · · · + −−−−→

bj+n−1).

The choice of vertex Ak implies that the n consecutive vectors
−→
bj,

−−→
bj+1, . . . ,

−−−−→
bj+n−1 are precisely−−−−→

AiAi+1, . . . ,
−−−−−→
Ak−1Ak and

−−−−→
AiAi−1, . . . ,

−−−−−→
Ak+1Ak, taken in some order. This implies Hi = 2hi. �

For a proof of (1), apply the lemma to each side of P. If O the centre of Q then, using the notation
of the lemma,

[BjBj+1O] = [Bj+nBj+n+1O] = [AiAi+1Ak] = Si .

Summation over all sides of P yields (1).
Set d(P) = [Q] − 4[P] for a convex polygon P with associate Q. Inequality (2) means that d(P) ≥ 0

for each convex polygon P. The last inequality will be proved by induction on the number ℓ of side
directions of P, i. e. the number of pairwise nonparallel lines each containing a side of P.

We choose to start the induction with ℓ = 1 as a base case, meaning that certain degenerate
polygons are allowed. More exactly, we regard as degenerate convex polygons all closed polygonal
lines of the form X1X2 . . . XkY1Y2 . . . YmX1, where X1,X2, . . . ,Xk are points in this order on a line
segment X1Y1, and so are Ym, Ym−1, . . . , Y1. The initial construction applies to degenerate polygons;
their associates are also degenerate, and the value of d is zero. For the inductive step, consider a convex
polygon P which determines ℓ side directions, assuming that d(P) ≥ 0 for polygons with smaller values
of ℓ.

Suppose first that P has a pair of parallel sides, i. e. sides on distinct parallel lines. Let AiAi+1 and
AjAj+1 be such a pair, and let AiAi+1 ≤ AjAj+1. Remove from P the parallelogram R determined

by vectors
−−−−→
AiAi+1 and

−−−−→
AiAj+1. Two polygons are obtained in this way. Translating one of them by

vector
−−−−→
AiAi+1 yields a new convex polygon P ′, of area [P] − [R] and with value of ℓ not exceeding the

one of P. The construction just described will be called operation A.

R

Aj+1 Aj

Ai Ai+1

P

P ′

Q Q′

The associate of P ′ is obtained from Q upon decreasing the lengths of two opposite sides by
an amount of 2AiAi+1. By the lemma, the distance between these opposite sides is twice the dis-
tance between AiAi+1 and AjAj+1. Thus operation A decreases [Q] by the area of a parallelogram
with base and respective altitude twice the ones of R, i. e. by 4[R]. Hence A leaves the difference
d(P) = [Q] − 4[P] unchanged.

Now, if P ′ also has a pair of parallel sides, apply operation A to it. Keep doing so with the
subsequent polygons obtained for as long as possible. Now, A decreases the number p of pairs of
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parallel sides in P. Hence its repeated applications gradually reduce p to 0, and further applications
of A will be impossible after several steps. For clarity, let us denote by P again the polygon obtained
at that stage.

The inductive step is complete if P is degenerate. Otherwise ℓ > 1 and p = 0, i. e. there are no
parallel sides in P. Observe that then ℓ ≥ 3. Indeed, ℓ = 2 means that the vertices of P all lie on the
boundary of a parallelogram, implying p > 0.

Furthermore, since P has no parallel sides, consecutive collinear vectors in the sequence
(−→
bk

)

(if

any) correspond to consecutive 180◦-angles in P. Removing the vertices of such angles, we obtain a
convex polygon with the same value of d(P).

In summary, if operation A is impossible for a nondegenerate polygon P, then ℓ ≥ 3. In addition,
one may assume that P has no angles of size 180◦.

The last two conditions then also hold for the associate Q of P, and we perform the following con-
struction. Since ℓ ≥ 3, there is a side BjBj+1 of Q such that the sum of the angles at Bj and Bj+1 is
greater than 180◦. (Such a side exists in each convex k-gon for k > 4.) Naturally, Bj+nBj+n+1 is a side
with the same property. Extend the pairs of sides Bj−1Bj, Bj+1Bj+2 and Bj+n−1Bj+n, Bj+n+1Bj+n+2

to meet at U and V , respectively. Let Q′ be the centrally symmetric convex 2(n+1)-gon obtained
from Q by inserting U and V into the sequence B1, . . . , B2n as new vertices between Bj , Bj+1

and Bj+n, Bj+n+1, respectively. Informally, we adjoin to Q the congruent triangles BjBj+1U and
Bj+nBj+n+1V . Note that Bj , Bj+1, Bj+n and Bj+n+1 are kept as vertices of Q′, although BjBj+1

and Bj+nBj+n+1 are no longer its sides.

Let AiAi+1 be the side of P such that
−−−−→
AiAi+1 =

−−−−−→
BjBj+1 =

−→
bj . Consider the point W such that

triangle AiAi+1W is congruent to triangle BjBj+1U and exterior to P. Insert W into the sequence
A1, A2, . . . , An as a new vertex between Ai and Ai+1 to obtain an (n+1)-gon P ′. We claim that P ′ is
convex and its associate is Q′.

W

Ai+2Ai+1

Ai

Ai−1

P Q

Bj+1

Bj Bj+n+1

V

Bj+n

U

Vectors
−−−→
AiW and

−−→
bj−1 are collinear and have the same direction, as well as vectors

−−−−→
WAi+1

and
−−→
bj+1. Since

−−→
bj−1,

−→
bj ,

−−→
bj+1 are consecutive terms in the sequence

(−→
bk

)

, the angle inequalities

∠(
−−→
bj−1,

−→
bj) ≤ ∠(

−−−−→
Ai−1Ai,

−→
bj) and ∠(

−→
bj ,

−−→
bj+1) ≤ ∠(

−→
bj,

−−−−−−→
Ai+1Ai+2) hold true. They show that P ′ is a

convex polygon. To construct its associate, vectors ±−−−−→
AiAi+1 = ±−→

bj must be deleted from the defining

sequence
(−→
bk

)

of Q, and the vectors ±−−−→
AiW , ±−−−−→

WAi+1 must be inserted appropriately into it. The

latter can be done as follows:

. . . ,
−−→
bj−1,

−−−→
AiW,

−−−−→
WAi+1,

−−→
bj+1, . . . , −−−→

bj−1, −−−−→
AiW, −−−−−→

WAi+1, −−−→
bj+1, . . . .

This updated sequence produces Q′ as the associate of P ′.
It follows from the construction that [P ′] = [P] + [AiAi+1W ] and [Q′] = [Q] + 2[AiAi+1W ]. There-

fore d(P ′) = d(P) − 2[AiAi+1W ] < d(P).
To finish the induction, it remains to notice that the value of ℓ for P ′ is less than the one for P.

This is because side AiAi+1 was removed. The newly added sides AiW and WAi+1 do not introduce
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new side directions. Each one of them is either parallel to a side of P or lies on the line determined
by such a side. The proof is complete.


