
Contents

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6



Problems Baltic Way 2014

Problems

Problem 1
Show that

cos(56◦) · cos(2 · 56◦) · cos(22 · 56◦) · . . . · cos(223 · 56◦) =
1

224
.

Problem 2
Let a0, a1, . . . , aN be real numbers satisfying a0 = aN = 0 and

ai+1 − 2ai + ai−1 = a2i

for i = 1, 2, . . . , N − 1. Prove that ai 6 0 for i = 1, 2, . . . , N − 1.

Problem 3
Positive real numbers a, b, c satisfy 1

a
+ 1

b
+ 1

c
= 3. Prove the inequality

1√
a3 + b

+
1√
b3 + c

+
1√
c3 + a

6
3√
2
.

Problem 4
Find all functions f defined on all real numbers and taking real values such that

f(f(y)) + f(x− y) = f(xf(y)− x)

for all real numbers x, y.

Problem 5
Given positive real numbers a, b, c, d that satisfy equalities

a2 + d2 − ad = b2 + c2 + bc and a2 + b2 = c2 + d2,

find all possible values of the expression ab+cd
ad+bc

.

Problem 6
In how many ways can we paint 16 seats in a row, each red or green, in such a way that

the number of consecutive seats painted in the same colour is always odd?
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Problem 7

Let p1, p2, . . . , p30 be a permutation of the numbers 1, 2, . . . , 30. For how many permu-

tations does the equality
30∑
k=1

|pk − k| = 450 hold?

Problem 8

Albert and Betty are playing the following game. There are 100 blue balls in a red bowl

and 100 red balls in a blue bowl. In each turn a player must make one of the following

moves:

a) Take two red balls from the blue bowl and put them in the red bowl.

b) Take two blue balls from the red bowl and put them in the blue bowl.

c) Take two balls of different colors from one bowl and throw the balls away.

They take alternate turns and Albert starts. The player who first takes the last red ball

from the blue bowl or the last blue ball from the red bowl wins. Determine who has a

winning strategy.

Problem 9

What is the least possible number of cells that can be marked on an n × n board such

that for each m > n
2

both diagonals of any m×m sub-board contain a marked cell?

Problem 10

In a country there are 100 airports. Super-Air operates direct flights between some pairs

of airports (in both directions). The traffic of an airport is the number of airports it has a

direct Super-Air connection with. A new company, Concur-Air, establishes a direct flight

between two airports if and only if the sum of their traffics is at least 100. It turns out

that there exists a round-trip of Concur-Air flights that lands in every airport exactly

once. Show that then there also exists a round-trip of Super-Air flights that lands in

every airport exactly once.

Problem 11

Let Γ be the circumcircle of an acute triangle ABC. The perpendicular to AB from C

meets AB at D and Γ again at E. The bisector of angle C meets AB at F and Γ again

at G. The line GD meets Γ again at H and the line HF meets Γ again at I. Prove that

AI = EB.
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Problem 12

Triangle ABC is given. Let M be the midpoint of the segment AB and T be the midpoint

of the arc BC not containing A of the circumcircle of ABC. The point K inside the

triangle ABC is such that MATK is an isosceles trapezoid with AT ||MK. Show that

AK = KC.

Problem 13

Let ABCD be a square inscribed in a circle ω and let P be a point on the shorter arc

AB of ω. Let CP ∩ BD = R and DP ∩ AC = S. Show that triangles ARB and DSR

have equal areas.

Problem 14

Let ABCD be a convex quadrilateral such that the line BD bisects the angle ABC. The

circumcircle of triangle ABC intersects the sides AD and CD in the points P and Q,

respectively. The line through D and parallel to AC intersects the lines BC and BA at

the points R and S, respectively. Prove that the points P , Q, R and S lie on a common

circle.

Problem 15

The sum of the angles A and C of a convex quadrilateral ABCD is less than 180◦. Prove

that

AB · CD + AD ·BC < AC(AB + AD).

Problem 16

Determine whether 712! + 1 is a prime number.

Problem 17

Do there exist pairwise distinct rational numbers x, y and z such that

1

(x− y)2
+

1

(y − z)2
+

1

(z − x)2
= 2014?

Problem 18

Let p be a prime number, and let n be a positive integer. Find the number of quadruples

(a1, a2, a3, a4) with ai ∈ {0, 1, . . . , pn − 1} for i = 1, 2, 3, 4 such that

pn | (a1a2 + a3a4 + 1).
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Problem 19
Let m and n be relatively prime positive integers. Determine all possible values of

gcd(2m − 2n, 2m2+mn+n2 − 1).

Problem 20
Consider a sequence of positive integers a1, a2, a3, . . . such that for k > 2 we have

ak+1 =
ak + ak−1

2015i
,

where 2015i is the maximal power of 2015 that divides ak + ak−1. Prove that if this

sequence is periodic then its period is divisible by 3.
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Solutions

Problem 1
Show that

cos(56◦) · cos(2 · 56◦) · cos(22 · 56◦) · . . . · cos(223 · 56◦) =
1

224
.

Solution. We start by rewriting the expression as follows:

cos(56◦)·cos(2·56◦)·. . .·cos(223 ·56◦) =
sin(56◦) · cos(56◦) · cos(2 · 56◦) · . . . · cos(223 · 56◦)

sin(56◦)
.

Now, by applying the double-angle formula sin(x) cos(x) = sin(2x)/2 to x = 56◦, we

obtain
sin(56◦) · cos(56◦) · cos(2 · 56◦) · . . . · cos(223 · 56◦)

sin(56◦)

=
sin(2 · 56◦) · cos(2 · 56◦) · . . . · cos(223 · 56◦)

2 · sin(56◦)
.

Similarly, by applying the double-angle formula 24 times, we get

cos(56◦) · cos(2 · 56◦) · . . . · cos(223 · 56◦) =
sin(224 · 56◦)

224 · sin(56◦)
.

It remains to prove that sin(224 · 56◦) = sin(56◦). If we can show that

224 · 56 = 360 · k + 56

for some integer k, then the desired equality follows by the periodicity of the sine function.

Note that

k =
224 · 56− 56

360
= 7 · 224 − 1

45
.

Since ϕ(45) = 24, the Euler theorem implies that k is indeed an integer, as claimed. J
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Problem 2
Let a0, a1, . . . , aN be real numbers satisfying a0 = aN = 0 and

ai+1 − 2ai + ai−1 = a2i

for i = 1, 2, . . . , N − 1. Prove that ai 6 0 for i = 1, 2, . . . , N − 1.

Solution. Assume the contrary. Then, there is an index i for which ai = max06j6N aj

and ai > 0. This i cannot be equal to 0 or N , since a0 = aN = 0. Thus, from ai > ai−1

and ai > ai+1 we obtain 0 < a2i = (ai+1−ai)+(ai−1−ai) 6 0, which is a contradiction. J
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Problem 3
Positive real numbers a, b, c satisfy 1

a
+ 1

b
+ 1

c
= 3. Prove the inequality

1√
a3 + b

+
1√
b3 + c

+
1√
c3 + a

6
3√
2
.

Solution. Applying several AM-GM inequalities (and using 1/a + 1/b + 1/c = 3) we

obtain

1√
a3 + b

+
1√
b3 + c

+
1√
c3 + a

6
1√

2a
√
ab

+
1√

2b
√
bc

+
1√

2c
√
ca

=
1√
2

(√
a
√
ab

a
√
ab

+

√
b
√
bc

b
√
bc

+

√
c
√
ca

c
√
ca

)

6
1

2
√

2

(
a+
√
ab

a
√
ab

+
b+
√
bc

b
√
bc

+
c+
√
ca

c
√
ca

)

=
1

2
√

2

(
3 +

1√
ab

+
1√
bc

+
1√
ca

)
=

1

2
√

2

(
3 +

√
ab

ab
+

√
bc

bc
+

√
ca

ca

)

6
1

2
√

2

(
3 +

a+ b

2ab
+
b+ c

2bc
+
c+ a

2ac

)
=

1

2
√

2
(3 + 3) =

3√
2
. J
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Problem 4
Find all functions f defined on all real numbers and taking real values such that

f(f(y)) + f(x− y) = f(xf(y)− x)

for all real numbers x, y.

Answer: f(x) = 0.

Solution. Substituting x = y = 0 into the original equality gives f(f(0)) + f(0) = f(0),

implying

f(f(0)) = 0. (1)

Selecting x = f(0)
2

and y = f(0) in the original equality gives

f(f(f(0))) + f

(
−f(0)

2

)
= f

(
f(0)

2
· f(f(0))− f(0)

2

)
.

Applying (1) here leads to f(0) + f
(
−f(0)

2

)
= f

(
−f(0)

2

)
which yields

f(0) = 0. (2)

Substituting y = 0 into the original equation we obtain f(f(0)) + f(x) = f(xf(0) − x),

which in the light of (2) reduces to

f(x) = f(−x) (3)

for all x. Finally, let us substitute x = 0 into the original equation. In the light of (2)

and (3), we obtain f(f(y)) + f(y) = 0, i. e.,

f(f(y)) = −f(y) (4)

for all real numbers y. Now, for each real y, we have

f(y) = −f(f(y)) (by (4))

= f(f(f(y))) (by (4))

= f(−f(y)) (by (4))

= f(f(y)) (by (3))

= −f(y), (by (4))

so that f(y) = 0. J
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Problem 5
Given positive real numbers a, b, c, d that satisfy equalities

a2 + d2 − ad = b2 + c2 + bc and a2 + b2 = c2 + d2,

find all possible values of the expression ab+cd
ad+bc

.

Answer:
√
3
2

.

Solution 1. Let A1BC1 be a triangle with A1B = b, BC1 = c and ∠A1BC1 = 120◦, and

let C2DA2 be another triangle with C2D = d, DA2 = a and ∠C2DA2 = 60◦. By the

law of cosines and the assumption a2 + d2 − ad = b2 + c2 + bc, we have A1C1 = A2C2.

Thus, the two triangles can be put together to form a quadrilateral ABCD with AB = b,

BC = c, CD = d, DA = a and ∠ABC = 120◦, ∠CDA = 60◦. Then ∠DAB + ∠BCD =

360◦ − (∠ABC + ∠CDA) = 180◦.

Suppose that ∠DAB > 90◦. Then ∠BCD < 90◦, whence a2 + b2 < BD2 < c2 + d2,

contradicting the assumption a2 + b2 = c2 + d2. By symmetry, ∠DAB < 90◦ also leads

to a contradiction. Hence, ∠DAB = ∠BCD = 90◦. Now, let us calculate the area of

ABCD in two ways: on one hand, it equals 1
2
ad sin 60◦ + 1

2
bc sin 120◦ or

√
3
4

(ad+ bc). On

the other hand, it equals 1
2
ab+ 1

2
cd or 1

2
(ab+ cd). Consequently,

ab+ cd

ad+ bc
=

√
3
4
1
2

=

√
3

2
. J

Solution 2. Setting T 2 = a2 + b2 = c2 + d2, where T > 0, we can write

a = T sinα, b = T cosα, c = T sin β, d = T cos β

for some α, β ∈ (0, π/2). With this notation, the first equality gives

sin2 α + cos2 β − sinα cos β = sin2 β + cos2 α + cosα sin β.

Hence, cos(2β)− cos(2α) = sin(α+ β). Since cos(2β)− cos(2α) = 2 sin(α− β) sin(α+ β)

and sin(α + β) 6= 0, this yields sin(α − β) = 1/2. Thus, in view of α − β ∈ (−π/2, π/2)

we deduce that cos(α− β) =
√

1− sin2(α− β) =
√

3/2.

Now, observing that ab + cd = T 2

2
(sin(2α) + sin(2β)) = T 2 sin(α + β) cos(α − β) and

ad+ bc = T 2 sin(α + β), we obtain (ab+ cd)/(ad+ bc) = cos(α− β) =
√

3/2. J
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Problem 6
In how many ways can we paint 16 seats in a row, each red or green, in such a way that

the number of consecutive seats painted in the same colour is always odd?

Answer: 1974.

Solution. Let gk, rk be the numbers of possible odd paintings of k seats such that the

first seat is painted green or red, respectively. Obviously, gk = rk for any k. Note that

gk = rk−1 + gk−2 = gk−1 + gk−2, since rk−1 is the number of odd paintings with first seat

green and second seat red and gk−2 is the number of odd paintings with first and second

seats green. Moreover, g1 = g2 = 1, so gk is the kth element of the Fibonacci sequence.

Hence, the number of ways to paint n seats in a row is gn + rn = 2fn. Inserting n = 16

we obtain 2f16 = 2 · 987 = 1974. J
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Problem 7
Let p1, p2, . . . , p30 be a permutation of the numbers 1, 2, . . . , 30. For how many permu-

tations does the equality
30∑
k=1

|pk − k| = 450 hold?

Answer: (15!)2.

Solution. Let us define pairs (ai, bi) such that {ai, bi} = {pi, i} and ai > bi. Then for

every i = 1, . . . , 30 we have |pi − i| = ai − bi and

30∑
i=1

|pi − i| =
30∑
i=1

(ai − bi) =
30∑
i=1

ai −
30∑
i=1

bi.

It is clear that the sum
30∑
i=1

ai −
30∑
i=1

bi is maximal when

{a1, a2, . . . , a30} = {16, 17, . . . , 30} and {b1, b2, . . . , b30} = {1, 2, . . . , 15},

where exactly two ai’s and two bj’s are equal, and the maximal value equals

2(16 + · · ·+ 30− 1− · · · − 15) = 450.

The number of such permutations is (15!)2. J
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Problem 8
Albert and Betty are playing the following game. There are 100 blue balls in a red bowl

and 100 red balls in a blue bowl. In each turn a player must make one of the following

moves:

a) Take two red balls from the blue bowl and put them in the red bowl.

b) Take two blue balls from the red bowl and put them in the blue bowl.

c) Take two balls of different colors from one bowl and throw the balls away.

They take alternate turns and Albert starts. The player who first takes the last red ball

from the blue bowl or the last blue ball from the red bowl wins. Determine who has a

winning strategy.

Answer: Betty has a winning strategy.

Solution. Betty follows the following strategy. If Albert makes move a), then Betty

makes move b) and vice verse. If Albert makes move c) from one bowl, Betty makes

move c) from the other bowl. The only exception of this rule is that if Betty can make a

winning move, that is, a move where she removes the last blue ball from the red bowl, or

the last red ball from the blue bowl, then she makes her winning move.

Firstly, we prove that it is possible to follow this strategy. Let

b = (# red balls in the blue bowl,# blue balls in the blue bowl),

r = (# blue balls in the red bowl,# red balls in the red bowl).

At the beginning b = r = (100, 0). If b = r and Albert takes a move a), then it must be

possible for Betty to take a move b) and again leave a situation with b = r to Albert.

The same happens when Albert takes a move b). If b = r and Albert takes a move c)

from one bowl, then it is possible for Betty to take a move c) from the other bowl and

again leave a situation with b = r. Thus, by following this strategy, Betty always leaves

to Albert a situation with b = r if she is not taking a winning move. Notice that there is

one situation from which no legal move is possible, that is, b = r = (1, 0), but this could

not happen, because the number of balls in a bowl is always even. (It is either increased

or decreased by 2, or doesn’t change.)

Now, we will prove that, by using this strategy, Betty wins. Assume that at some

point Albert wins, that is, he takes a winning move. Since, before his move, we have

b = r, the situation was either b = r = (1, s), s > 1, or b = r = (2, t), t > 0. But that

means that either b or r was either (1, s′), s′ > 1 (because 1 + s′ is even), or (2, t′), t′ > 0,

13
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before Betty made her last move. This is a contradiction with Betty’s strategy, because in

this situation Betty would have taken a winning move, and the game would have stopped.

Hence, Betty always wins. J
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Problem 9
What is the least possible number of cells that can be marked on an n × n board such

that for each m > n
2

both diagonals of any m×m sub-board contain a marked cell?

Answer: n.

Solution. For any n it is possible to set n marks on the board and get the desired

property, if they are simply put on every cell in row number
⌈
n
2

⌉
. We now show that n is

also the minimum amount of marks needed.

If n is odd, then there are 2n series of diagonal cells of length > n
2

and both end cells

on the edge of the board, and, since every mark on the board can at most lie on two of

these diagonals, it is necessary to set at least n marks to have a mark on every one of

them.

If n is even, then there are 2n− 2 series of diagonal cells of length > n
2

and both end

cells on the edge of the board. We call one of these diagonals even if every coordinate

(x, y) on it satisfies 2 | x− y and odd else. It can be easily seen that this is well defined.

Now, by symmetry, the number of odd and even diagonals is the same, so there are exactly

n− 1 of each of them. Any mark set on the board can at most sit on two diagonals and

these two have to be of the same kind. Thus, we will need at least n
2

marks for the even

diagonals, since there are n− 1 of them and 2 - n− 1, and, similarly, we need at least n
2

marks for the the odd diagonals. So we need at least n
2

+ n
2

= n marks to get the desired

property. J
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Problem 10
In a country there are 100 airports. Super-Air operates direct flights between some pairs

of airports (in both directions). The traffic of an airport is the number of airports it has a

direct Super-Air connection with. A new company, Concur-Air, establishes a direct flight

between two airports if and only if the sum of their traffics is at least 100. It turns out

that there exists a round-trip of Concur-Air flights that lands in every airport exactly

once. Show that then there also exists a round-trip of Super-Air flights that lands in

every airport exactly once.

Solution. Let G and G′ be two graphs corresponding to the flights of Super-Air and

Concur-Air, respectively. Then the traffic of an airport is simply the degree of a corre-

sponding vertex, and the assertion means that the graph G has a Hamiltonian cycle.

Lemma. Let a graph H has 100 vertices and contains a Hamiltonian path (not cycle)

that starts at the vertex A and ends in B. If the sum of degrees of vertices A and B is at

least 100, then the graph H contains a Hamiltonian cycle.

Proof. Put N = degA. Then degB > 100 − N . Let us enumarate the vertices along

the Hamiltonian path: C1 = A, C2, . . . , C100 = B. Let Cp, Cq, Cr, . . . be the N vertices

which are connected directly to A. Consider N preceding vertices: Cp−1, Cq−1, Cr−1, . . . .

Since the remaining part of the graph H contains 100 − N vertices (including B) and

degB > 100−N , we conclude that at least one vertex under consideration, say Cr−1, is

connected directly to B. Then

A = C1 → C2 → · · · → Cr−1 → B = C100 → C99 → · · · → Cr → A

is a Hamiltonian cycle. J

Now, let us solve the problem. Assume that the graph G contains no Hamiltonian

cycle. Consider arbitrary two vertices A and B not connected by an edge in the graph G

but connected in G′. The latter means that degA+ degB > 100 in the graph G. Let us

add the edge AB to the graph G. By the lemma, there was no Hamiltonian path from

A to B in the graph G. Therefore, the graph G still does not contain a Hamiltonian

cycle after adding this new edge. By repeating this operation, we will obtain that all the

vertices connected by an edge in the graph G′ are also connected in the graph G and

at the same time the graph G has no Hamiltonian cycle (in contrast to G′). This is a

contradiction. J
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Problem 11
Let Γ be the circumcircle of an acute triangle ABC. The perpendicular to AB from C

meets AB at D and Γ again at E. The bisector of angle C meets AB at F and Γ again

at G. The line GD meets Γ again at H and the line HF meets Γ again at I. Prove that

AI = EB.

Solution. Since CG bisects ∠ACB, we have ∠AHG = ∠ACG = ∠GCB. Thus, from

the triangle ADH we find that ∠HDB = ∠HAB+∠AHG = ∠HCB+∠GCB = ∠GCH.

It follows that a pair of opposite angles in the quadrilateral CFDH are supplementary,

whence CFDH is a cyclic quadrilateral. Thus, ∠GCE = ∠FCD = ∠FHD = ∠IHG =

∠ICG. In view of ∠ACG = ∠GCB we obtain ∠ACI = ∠ECB, which implies AI = EB.

A B

C

D

E

F

G

H

I

Γ

J
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Problem 12
Triangle ABC is given. Let M be the midpoint of the segment AB and T be the midpoint

of the arc BC not containing A of the circumcircle of ABC. The point K inside the

triangle ABC is such that MATK is an isosceles trapezoid with AT ||MK. Show that

AK = KC.

Solution. Assume that TK intersects the circumcircle of ABC at the point S (where

S 6= T ). Then ∠ABS = ∠ATS = ∠BAT , so ASBT is a trapezoid. Hence, MK||AT ||SB
and M is the midpoint of AB. Thus, K is the midpoint of TS. From ∠TAC = ∠BAT =

∠ATS we see that ACTS is an inscribed trapezoid, so it is isosceles. Thus, AK = KC,

since K is the midpoint of TS. J
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Problem 13
Let ABCD be a square inscribed in a circle ω and let P be a point on the shorter arc

AB of ω. Let CP ∩ BD = R and DP ∩ AC = S. Show that triangles ARB and DSR

have equal areas.

Solution. Let T = PC ∩ AB. Then ∠BTC = 90◦ − ∠PCB = 90◦ − ∠PDB = 90◦ −
∠SBD = ∠BSC, thus the points B, S, T, C are concyclic. Hence ∠TSC = 90◦, and,

therefore, TS||BD. It follows that

[DSR] = [DTR] = [DTB]− [TBR] = [CTB]− [TBR] = [CRB] = [ARB],

where [∆] denotes the area of a triangle ∆. J
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Problem 14
Let ABCD be a convex quadrilateral such that the line BD bisects the angle ABC. The

circumcircle of triangle ABC intersects the sides AD and CD in the points P and Q,

respectively. The line through D and parallel to AC intersects the lines BC and BA at

the points R and S, respectively. Prove that the points P , Q, R and S lie on a common

circle.

Solution 1. Since ∠SDP = ∠CAP = ∠RBP , the quadrilateral BRDP is cyclic (see

Figure 1). Similarly, the quadrilateral BSDQ is cyclic. Let X be the second intersection

point of the segment BD with the circumcircle of the triangle ABC. Then

∠AXB = ∠ACB = ∠DRB ,

and, moreover, ∠ABX = ∠DBR. It means that triangles ABX and DBR are similar.

Thus

∠RPB = ∠RDB = ∠XAB = ∠XPB ,

which implies that the points R, X and P are collinear. Analogously, we can show that

the points S, X and Q are collinear.

Thus, we obtain RX ·XP = DX ·XB = SX ·XQ, which proves that the points P ,

Q, R and S lie on a common circle.

A

B

C

DR S

P

Q
X

Figure 1

J
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Solution 2. If AB = BC, then the points R and S are symmetric to each other with

respect to the line BD. Similarly, the points P and Q are symmetric to each other with

respect to the line BD. Therefore, RSPQ is an isosceles trapezoid, so the claim follows.

Assume that AB 6= BC. Denote by ω the circumcircle of the triangle ABC (see

Figure 2). Since the lines AC and SR are parallel, the dilation with center B, which

takes A to S, also takes C to R and the circle ω to the circumcircle ω1 of BSR. This

implies that ω and ω1 are tangent at B.

Note that ∠RDQ = ∠DCA = ∠DPQ, which means that the circumcircle ω2 of the

triangle PQD is tangent to the line RS at D.

Denote by K the intersection point of the line RS with the common tangent to ω and

ω1 at B. Then we have

∠KBD = ∠KBR + ∠CBD = ∠DSB + ∠SBD = ∠KDB ,

which implies that KD = KB. Therefore, the powers of the point K with respect to the

circles ω and ω2 are equal, so K lies on their radical axis. This implies that the points

K, P and Q are collinear. Finally, we obtain

KR ·KS = KB2 = KD2 = KP ·KQ ,

which shows that the points P , Q, R and S lie on a common circle.

A

B

C

DR S

P
Q

K

ω ω1

ω2

Figure 2

J

Solution 3. Denote by X ′ the image of the point X under some fixed inversion with

center B. At the beginning of Solution 2 we noticed that the circumcircles of the triangles

ABC and SBR are tangent at the point B. Therefore, the images of these two circles
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under the considered inversion become two parallel lines A′C ′ and S ′R′ (see Figure 3).

Since D lies on the line RS and also on the angle bisector of the angle ABC, the point

D′ lies on the circumcircle of the triangle BR′S ′ and also on the angle bisector of the

angle A′BC ′. Since the point P , other than A, is the intersection point of the line AD

and the circumcircle of the triangle ABC, the point P ′, other than A′, is the intersection

point of the circumcircle of the triangle BA′D′ and the line A′C ′. Similarly, the point Q′

is the intersection point of the circumcircle of the triangle BC ′D′ and the line A′C ′.

Therefore, we obtain

∠D′Q′P ′ = ∠C ′BD′ = ∠A′BD′ = ∠D′P ′Q′

and

∠D′R′S ′ = ∠D′BS ′ = ∠R′BD′ = ∠R′S ′D′ .

This implies that the points P ′ and S ′ are symmetric to the points Q′ and R′ with respect

to the line passing through D′ and perpendicular to the lines A′C ′ and S ′R′. Thus

P ′S ′R′Q′ is an isosceles trapezoid, so the points P ′, S ′, R′ and Q′ lie on a common circle.

Therefore, the points P , Q, R and S also lie on a common circle.

S′

B

R′

C ′ A′

D′

Q′ P ′

Figure 3

J
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Problem 15
The sum of the angles A and C of a convex quadrilateral ABCD is less than 180◦. Prove

that

AB · CD + AD ·BC < AC(AB + AD).

Solution 1. Let ω be the circumcircle ABD. Then the point C is outside this circle,

but inside the angle BAD. Let us ppply the inversion with the center A and radius 1.

This inversion maps the circle ω to the line ω′ = B′D′, where B′ and D′ are images

of B and D. The point C goes to the point C ′ inside the triangle AB′D′. Therefore,

B′C ′ + C ′D′ < AB′ + AD′. Now, due to inversion properties, we have

B′C ′ =
BC

AB · AC
, C ′D′ =

CD

AC · AD
, AB′ =

1

AB
, AD′ =

1

AD
.

Hence
BC

AB · AC
+

CD

AC · AD
<

1

AB
+

1

AD
.

Multiplying by AB · AC · AD, we obtain the desired inequality. J

Solution 2. Consider an inscribed quadrilateral A′B′C ′D′ with sides of the same lengths

as ABCD (such a quadrilateral exists, because we can draw these 4 sides in a big circle

and afterwards continuously decrease its radius). Then ∠B′ + ∠D′ = 180◦ < ∠B + ∠D.

Therefore, ∠B′ < ∠B or ∠D′ < ∠D and hence A′C ′ < AC, by the cosine theorem.

So the inequality under consideration for A′B′C ′D′ is stronger than that for ABCD.

However, the inequality for A′B′C ′D′ follows immediately from Ptolemy’s theorem. J
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Problem 16
Determine whether 712! + 1 is a prime number.

Answer: It is composite.

Solution. We will show that 719 is a prime factor of given number (evidently, 719 <

712! + 1). All congruences are considered modulo 719. By Wilson’s theorem, 718! ≡ −1.

Furthermore,

713 · 714 · 715 · 716 · 717 · 718 ≡ (−6)(−5)(−4)(−3)(−2)(−1) ≡ 720 ≡ 1.

Hence 712! ≡ −1, which means that 712! + 1 is divisible by 719.

We remark that 719 is the smallest prime greater then 712, so 719 is the smallest

prime divisor of 712! + 1. J
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Problem 17
Do there exist pairwise distinct rational numbers x, y and z such that

1

(x− y)2
+

1

(y − z)2
+

1

(z − x)2
= 2014?

Answer: No.

Solution. Put a = x− y and b = y − z. Then

1

(x− y)2
+

1

(y − z)2
+

1

(z − x)2
=

1

a2
+

1

b2
+

1

(a+ b)2

=
b2(a+ b)2 + a2(a+ b)2 + a2b2

a2b2(a+ b)2

=

(
a2 + b2 + ab

ab(a+ b)

)2

.

On the other hand, 2014 is not a square of a rational number. Hence, such numbers x, y, z

do not exist. J
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Problem 18
Let p be a prime number, and let n be a positive integer. Find the number of quadruples

(a1, a2, a3, a4) with ai ∈ {0, 1, . . . , pn − 1} for i = 1, 2, 3, 4 such that

pn | (a1a2 + a3a4 + 1).

Answer: p3n − p3n−2.

Solution. We have pn − pn−1 choices for a1 such that p - a1. In this case for any of the

pn · pn choices of a3 and a4, there is a unique choice of a2, namely,

a2 ≡ a−11 (−1− a3a4) mod pn.

This gives p2n(pn − pn−1) = p3n−1(p− 1) of quadruples.

If p | a1 then we obviously have p - a3, since otherwise the condition

pn | (a1a2 + a3a4 + 1)

is violated. Now, if p | a1, p - a3, for any choice of a2 there is a unique choice of a4,

namely,

a4 ≡ a−13 (−1− a1a2) mod pn.

Thus, for these pn−1 choices of a1 and pn − pn−1 choices of a3, we have for each of the pn

choices of a2 a unique a4. So in this case there are pn−1(pn − pn−1)pn = p3n−2(p − 1) of

quadruples.

Thus, the total number of quadruples is

p3n−1(p− 1) + p3n−2(p− 1) = p3n − p3n−2. J
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Problem 19
Let m and n be relatively prime positive integers. Determine all possible values of

gcd(2m − 2n, 2m2+mn+n2 − 1).

Answer: 1 and 7.

Solution. Without restriction of generality we may assume that m > n. It is well known

that

gcd(2p − 1, 2q − 1) = 2gcd(p,q) − 1,

so

gcd(2m − 2n, 2m2+mn+n2 − 1) = gcd(2m−n − 1, 2m2+mn+n2 − 1)

= 2gcd(m−n,m2+mn+n2) − 1.

Let d > 1 be a divisor of m− n. Clearly, gcd(m, d) = 1, since m and n are relatively

prime. Assume that d also divides m2 + mn + n2. Then d divides 3m2. In view of

gcd(m, d) = 1 the only choices for d are d = 1 and d = 3. Hence gcd(m−n,m2 +mn+n2)

is either 1 or 3. Consequently, gcd(2m − 2n, 2m2+mn+n2 − 1) may only assume the values

21 − 1 = 1 and 23 − 1 = 7.

Both values are attainable, since m = 2, n = 1 gives

gcd(22 − 21, 222+2·1+12 − 1) = gcd(2, 27 − 1) = 1,

whereas m = 1, n = 1 gives

gcd(21 − 21, 212+1·1+12 − 1) = gcd(0, 23 − 1) = 7. J
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Problem 20
Consider a sequence of positive integers a1, a2, a3, . . . such that for k > 2 we have

ak+1 =
ak + ak−1

2015i
,

where 2015i is the maximal power of 2015 that divides ak + ak−1. Prove that if this

sequence is periodic then its period is divisible by 3.

Solution. If all the numbers in the sequence are even, then we can divide each element of

the sequence by the maximal possible power of 2. In this way we obtain a new sequence

of integers which is determined by the same recurrence formula and has the same period,

but now it contains an odd number. Consider this new sequence modulo 2. Since the

number 2015 is odd, it has no influence to the calculations modulo 2, so we may think that

modulo 2 this sequence is given by the Fibonacci recurrence ak+1 ≡ ak +ak−1 with aj ≡ 1

(mod 2) for at least one j. Then it has the following form . . . , 1, 1, 0, 1, 1, 0, 1, 1, 0, . . .

(with period 3 modulo 2), so that the length of the original period of our sequence (if it

is periodic!) must be divisible by 3. J

Remark. It is not known whether a periodic sequence of integers satisfying the recurrence

condition of this problem exists. The solution of such a problem is apparently completely

out of reach. See, e.g., the recent preprint

Brandon Avila and Tanya Khovanova, Free Fibonacci sequences, 2014, preprint at

http://arxiv.org/pdf/1403.4614v1.pdf

for more information. (The problem given at the olympiad is Lemma 28 of this paper,

where 2015 can be replaced by any odd integer greater than 1.)
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