
Baltic Way 2003

Problems and Solutions

1. Let Q+ be the set of positive rational numbers.
Find all functions f : Q+ → Q+ which for all x ∈ Q+ fulfil
(1) : f( 1

x
) = f(x)

(2) : (1 + 1
x
)f(x) = f(x + 1)

Solution: Set g(x) = f(x)
f(1)

. Function g fulfils (1), (2) and g(1) = 1.
First we prove that if g exists then it is unique. We prove that g is uniquely
defined on x = p

q
by induction on max(p, q). If max(p, q) = 1 then x = 1

and g(1) = 1. If p = q then x = 1 and g(x) is unique. If p 6= q then we
can assume (according to (1)) that p > q. From (2) we get g( p

q
) = (1 +

q

p−q
)g(p−q

q
). The induction assumption and max(p, q) > max(p − q, q) ≥ 1

now give that g(p

q
) is unique.

Define the function g by g( p

q
) = pq where p and q are choosen such that

gcd(p, q) = 1. It is easily seen that g fulfils (1), (2) and g(1) = 1. All
functions fulfilling (1) and (2) are therefore f( p

q
) = apq, where gcd(p, q) = 1

and a ∈ Q+.

2. Prove that any real solution of

x3 + px + q = 0

satisfies the inequality 4qx ≤ p2.

Solution: Let x0 be a root of the qubic, then x3 + px + q ≡ (x − x0)(x
2 +

ax+b) ≡ x3 +(a−x0)x
2 +(b−ax0)x−bx0. So a = x0, p = b−ax0 = b−x2

0,
−q = bx0. Hence p2 = b2 − 2bx2

0 + x4
0. Also 4x0q = −4x2

0b. So p2 − 4x0q =
b2 + 2bx2

0 + x4
0 = (b + x2

0)
2 ≥ 0.

Alternative solution: As the equation x0x
2 + px + q = 0 has a root

(x = x0), there must be D ≥ 0 ⇔ p2 − 4qx0 ≥ 0.

(Also an equation x2+px+qx0 = 0 having a root x = x2
0 can be considered.)

3. Let x, y and z be positive real numbers such that xyz = 1. Prove that

(1 + x)(1 + y)(1 + z) ≥ 2

(

1 + 3

√

y

x
+ 3

√

z

y
+ 3

√

x

z

)

.

Solution: Put a = bx, b = cy and c = az. The given inequality then takes
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the form

(

1 +
a

b

)

(

1 +
b

c

)

(

1 +
c

a

)

≥ 2

(

1 +
3

√

b2

ac
+

3

√

c2

ab
+

3

√

a2

bc

)

=

= 2

(

1 +
a + b + c

3 3
√

abc

)

.

By the A-G inequality we have

(

1 +
a

b

)

(

1 +
b

c

)

(

1 +
c

a

)

=

=
a + b + c

a
+

a + b + c

b
+

a + b + c

c
− 1 ≥

≥ 3

(

a + b + c
3
√

abc

)

− 1 ≥ 2
a + b + c

3
√

abc
+ 3 − 1 = 2

(

1 +
a + b + c

3
√

abc

)

,

qed.

Alternative solution: Expanding the left side we obtain

x + y + z +
1

x
+

1

y
+

1

z
≥ 2

(

3

√

y

x
+ 3

√

z

y
+ 3

√

x

z

)

.

As 3

√

y

x
≤ 1

3

(

y + 1
x

+ 1
)

etc, it suffices to prove that

x + y + z +
1

x
+

1

y
+

1

z
≥ 2

3

(

x + y + z +
1

x
+

1

y
+

1

z

)

+ 2 ,

which follows from a + 1
a
≥ 2.

4. Let a, b, c be positive real numbers. Prove that

2a

a2 + bc
+

2b

b2 + ca
+

2c

c2 + ab
≤ a

bc
+

b

ca
+

c

ab
.

Solution: First we prove that

2a

a2 + bc
≤ 1

2

(1

b
+

1

c

)

,

which is equivalent to 0 ≤ b(a − c)2 + c(a − b)2, and therefore holds true.
Now we turn to inequality

1

b
+

1

c
≤ 1

2

(2a

bc
+

b

ca
+

c

ab

)

,
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which is equivalent to 0 ≤ (a − b)2 + (a − c)2. Hence we have proved that

2a

a2 + bc
≤ 1

4

(2a

bc
+

b

ca
+

c

ab

)

.

Analogously we have

2b

b2 + ca
≤ 1

4

(2b

ca
+

c

ab
+

a

bc

)

,

2c

c2 + ab
≤ 1

4

(2c

ab
+

a

bc
+

b

ca

)

and it suffices to sum the above three inequalities.

Alternative solution: As a2 + bc ≥ 2a
√

bc etc, it is sufficient to prove
that

1√
bc

+
1√
ac

+
1√
ab

≤ a

bc
+

b

ca
+

c

ab
,

which can be obtained “inserting” 1
a

+ 1
b

+ 1
c

between the left side and the
right side.

5. A sequence (an) is defined as follows: a1 =
√

2, a2 = 2, and an+1 = ana2
n−1

for n ≥ 2. Prove that for every n ≥ 1 we have

(1 + a1)(1 + a2) . . . (1 + an) < (2 +
√

2)a1a2 . . . an.

Solution: First we prove inductively that for n ≥ 1 an = 22n−2

. We have
a1 = 22−1

, a2 = 220

and

an+1 = 22n−2 · (22n−3

)2 = 22n−2 · 22n−2

= 22n−1

.

Since 1 + a1 = 1 +
√

2, we must prove, that

(1 + a2)(1 + a3) . . . (1 + an) < 2a2a3 . . . an.

Right-hand side is equal to

21+20+21+...+2n−2

= 22n−1

and the left-hand side

(1 + 220

)(1 + 221

) . . . (1 + 22n−2

) =

= 1 + 220

+ 221

+ 220+21

+ 222

+ . . . + 220+21+...+2n−2

=

= 1 + 2 + 22 + 23 + . . . + 22n−1
−1 = 22n−1 − 1.

The proof is complete.
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6. Let n ≥ 2 and d ≥ 1 be integers with d | n, and let x1, x2, . . . , xn be
real numbers such that x1 + x2 + · · · + xn = 0. Prove that there are at
least

(

n−1
d−1

)

choices of d indices 1 ≤ i1 < i2 < · · · < id ≤ n such that
xi1 + xi2 + · · ·+ xid ≥ 0.

Solution: Put m := n/d and [n] := {1, 2, . . . , n}, and consider all parti-
tions [n] = A1∪A2∪· · ·∪Am of [n] into d-element subsets Ai, i = 1, 2, . . . , m.
The number of such partitions is denoted by t. Clearly, there are exactly
(

n

d

)

d-element subsets of [n] each of which occurs in the same number of par-
titions. Hence, every A ⊆ [n] with |A| = d occurs in exactly s := tm/

(

n

d

)

partitions. On the other hand, every partition contains at least one d-
element set A such that

∑

i∈A xi ≥ 0. Consequently, the total number of
sets with this property is at least t/s =

(

n

d

)

/m = d
n

(

n

d

)

=
(

n−1
d−1

)

.

7. Let X be a subset of {1, 2, 3, . . . , 10000} with the following property: if a,
b ∈ X, a 6= b, then a · b /∈ X. What is the maximal number of elements in
X?

Solution: Answer: 9901.
If X = {100, 101, 102, . . . , 9999, 10000}, then for any two selected a and b,
a 6= b, a · b ≥ 100 ·101 > 10000, so a · b 6∈ X. So X may have 9901 elements.

Suppose that x1 < x2 < · · · < xk are all elements of X that are less than
100. If there are none of them, no more than 9901 numbers can be in the set
X. Otherwise, if x1 = 1 no other number can be in the set X, so suppose
x1 > 1 and consider the pairs

200 − x1, (200 − x1) · x1

200 − x2, (200 − x2) · x2

...

200 − xk, (200 − xk) · xk

Clearly x1 < x2 < · · · < xk < 100 < 200 − xk < 200 − xk−1 < · · · < 200 −
x2 < 200−x1 < 200 < (200−x1) ·x1 < (200−x2) ·x2 < · · · < (200−xk) ·xk.
So all numbers in these pairs are different and greater than 100. So at most
one from each pair is in the set X. Therefore, there are at least k numbers
greater than 100 and 99 − k numbers less than 100 that are not in the set
X, together at least 99 numbers out of 10000 not being in the set X.

8. There are 2003 pieces of candy on a table. Two players alternately make
moves. A move consists of eating one candy or half of the candies on the
table (the “lesser half” if there is an odd number of candies); at least one
candy must be eaten at each move. The loser is the one who eats the last
candy. Which player – the first or the second – has a winning strategy?
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Solution: Answer: the second.
Let us prove inductively that for 2n pieces of candy the first has a winning
strategy. For n = 1 it is obvious. Suppose it is true for 2n pieces, and let’s
consider 2n + 2 pieces. If for 2n + 1 pieces the second is the winner, then
the first eats 1 piece and becomes the second in the game starting with
2n + 1 pieces. So suppose that for 2n + 1 pieces the first is the winner. His
winning move for 2n + 1 isn’t eating 1 piece (accordingly to the inductive
assumption). So his winning move is to eat n pieces, leaving the second
with n + 1 pieces, when the second must lose. But the first can leave the
second with n+1 pieces from the starting position with 2n+2 pieces, eating
n + 1 pieces; so 2n + 2 is the winning position for the first.
Now if there are 2003 pieces of candy on the table, the first must eat either
1 or 1001 candies, leaving an even number of candies on the table. So the
second player will be the first player in a game with even number of candies
and therefore has a winning strategy.

9. It is known that n is a positive integer, n ≤ 144. Ten questions of type
“Is n smaller than a?” are allowed. Answers are given with a delay: an
answer to the i-th question is given only after the (i+1)-st question is asked,
i = 1, 2, . . . , 9. The answer to the 10th question is given immediately after
it is asked. Find a strategy for identifying n.

Solution: Let’s denote Fibonacci numbers as F0 = 1, F1 = 2, F2 = 3, . . . ,
F10 = 144. We will consider two types of situations: ‘N ’ denotes that we
know for sure that n is one of N consecutive integers (and we know these
integers); ‘N →?M ’ denotes that we know for sure that n is one of N + M
consecutive integers (and we know these integers), and a question denoted
by →? is set with an answer unknown so far.
Clearly, the initial situation is ‘F10’.

Theorem. There exists a strategy which guarantees that after setting i
questions and receiving answers to the first (i− 1) of them (i = 1, 2, . . . , 9)
we get one of the following situations: ‘F10−i’; ‘F9−i →?F10−i’; ‘F10−i →
?F9−i’.
The proof is by a straightforward induction, the next question dividing the
segment of length F10−i into two segments of lengths F9−i and F8−i, the
longest of them being situated at one or another end of the whole “segment
of hypotheses”.

So after setting 9 questions we get one of the following situations (hypotet-
ical numbers are denoted by ◦): ‘◦◦’; ‘◦ →? ◦ ◦’; ‘◦◦ →?◦’. It is clear that
with the next, 10th question, “separating” the still unseparated hypotheses,
we will find n.
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10. A lattice point in the plane is a point whose coordinates are both in-
tegral. The centroid of four points (xi, yi), i = 1, 2, 3, 4, is the point
(x1+x2+x3+x4

4
, y1+y2+y3+y4

4
). Let n be the largest natural number with the

following property: There are n distinct lattice points in the plane such
that the centroid of any four of them is not a lattice point. Prove that
n = 12.

Solution: To prove n ≤ 12, we have to show that there are 12 lattice
points (xi, yi), i = 1, 2, , . . . , 12, such that no four determine a lattice point
centroid. This is guaranteed if we just choose the points such that xi ≡
0 (mod 4) for i = 1, . . . , 6, xi ≡ 1 (mod 4) for i = 7, . . . , 12, yi ≡ 0 (mod 4)
for i = 1, 2, 3, 10, 11, 12, yi ≡ 1 (mod 4) for i = 4, . . . , 9.

Now let Pi, i = 1, 2, . . . , 13, be lattice points. We have to show that some
four of them determine a lattice point centroid. First observe that, by
the pigeonhole principle, among any five of the points we find two such
that their x-coordinates as well as their y-coordinates have the same parity.
Consequently, among any five of the points there are two whose midpoint is
a lattice point. Iterated application of this observation implies that among
the 13 points in question we find five disjoint pairs of points whose midpoint
is a lattice point. Among these five midpoints we again find two, say M and
M ′, such that their midpoint C is a lattice point. Finally, if M and M ′ are
the midpoints of PiPj and PkP`, respectively, {i, j, k, `} ⊂ {1, 2, . . . , 13},
then C is the centroid of Pi, Pj, Pk, P`.

11. Is it possible to select 1000 points in a plane so that at least 6000 distances
between two of them are equal?

Solution: Yes, it is. Let’s start with configuration of 4 points and 5
distances equal to d, like on picture (α):

(α)

Now take (α) and two copies of it obtainable from (α) by parallel shifts

along vectors −→a and
−→
b , |−→a | = |−→b | = d and ∠(−→a ,

−→
b ) = 60◦. Vectors −→a

and
−→
b should be chosen so that no two vertices of (α) and of two copies

coincide. We get 3 · 4 = 12 points and 3 · 5 + 12 = 27 distances.
Proceeding in the same way, we get gradually
3 · 12 = 36 points and 3 · 27 + 36 = 117 distances;
3 · 36 = 108 points and 3 · 117 + 108 = 459 distances;
3 · 108 = 324 points and 3 · 459 + 324 = 1701 distances;
3 · 324 = 972 points and 3 · 1701 + 972 = 6075 distances.

12. Let ABCD be a square. Let M be an inner point on side BC and N be an
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inner point on side CD with ∠MAN = 45◦. Prove that the circumcenter
of AMN lies on AC.

Solution: Draw a circle ω through M , C, N ; let it intersect AC at O. We
claim that O is the circumsenter of AMN .
Clearly ∠MON = 180◦ − ∠MCN = 90◦. If the radius of ω is R, then
OM = 2R sin 45◦ = R

√
2; similarly ON = R

√
2. Therefore OM = ON .

Draw a circle with center O and a radius R
√

2. As ∠MAN = 1
2
∠MON ,

this circle will pass through A.

A

B C

D

M

NO

ω

13. Let ABCD be a rectangle and BC = 2 · AB. Let E be the midpoint of
BC and P an arbitrary inner point of AD. Let F and G be the feet of
perpendiculars drawn correspondingly from A to BP and from D to CP .
Prove that the points E, F , P , G are concyclic.

Solution: From rectangular triangle BAP we have BP · BF = AB2 =
BE2. Therefore the circumference through F and P touching the line BC
between B and C touches it at E. Analogously, the circumference through
P and G touching the line BC between B and C touches it at E. But there
is only one circumference touching BC at E and passing through P .

A D

B CE

P

F

G

14. Let ABC be an arbitrary triangle and AMB, BNC, CKA regular triangles
outward of ABC. Through the midpoint of MN a perpendicular to AC is
constructed; similarly through midpoints of NK resp. KM perpendiculars
to AB resp. BC are constructed. Prove that these 3 perpendiculars intersect
at the same point.

Solution: Let O be the midpoint of MN , E and F – the midpoints of
AB resp. BC. As 4MBC transforms into 4ABN when rotated for 60◦

around B we get MC = AN (it is also well-known fact). Considering
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now the quadrangles AMBN and CMBN we get OE = OF (from Eiler’s
formula a2+b2+c2+d2 = e2+f 2+4·PQ2 or otherwise). As EF‖AC we get
from this that a perpendicular trough O passes through the circumcenter
of EFG, as it is the perpendicular bisector of EF . The same holds for two
other perpendiculars.

B

N

M

A

C
G

E F

O

Alternative solution: Let’s denote the midpoints of MN , NK, KM
by B1, C1, A1 respectively. Clearly 4A1B1C1 is homothetic to 4NKM .
The perpendiculars through M , N , K to AB, BC, CA respectively are
concurrent (by radical axis, or by Steiner-Carnot theorem, or somehow
else). The desired result follows now from the homothety.

15. Let P be the intersection point of the diagonals AC and BD in a cyclic
quadrilateral. A circle through P touches the side CD in the midpoint M
of this side and intersects the segments BD and AC in the points Q and
R respectively. Let S be a point on the segment BD such that BS = DQ.
The parallel to AB through S intersects AC at T . Prove that AT = RC.

B

A

D

C

Q

R

P

T

S

Solution: With reference to the figure above we have CR·CP = DQ·DP =
CM2 = DM2 ⇔ RC = DQ·DP

CP
. We also have AT

BS
= AP

BP
= AT

DQ
⇔ AT =

AP ·DQ

BP
. Since ABCD is cyclic the result now comes from the fact that
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DP · BP = AP · CP (due to well-known theorem).

16. Find all pairs of positive integers (a, b) such that a− b is a prime and ab is
a perfect square.

Solution: Let p be a prime such that a − b = p and let ab = k2. Insert
a = b + p in the equation ab = k2 and then do the following:

(b + p)b = k2 ⇔ (b +
p

2
)2 − p2

4
= k2 ⇔ (2b + p)2 − 4k2 = p2 ⇔

⇔ (2b + p + 2k)(2b + p − 2k) = p2 .

Since 2b+p+2k > 2b+p−2k and p is a prime, we conclude 2b+p+2k = p2

and 2b + p − 2k = 1. By adding these equations we get 2b + p = p2+1
2

and

then b = (p−1
2

)2. a = b + p = (p+1
2

)2. By checking we conclude that all the

solutions are (a, b) = (( p+1
2

)2, (p−1
2

)2) with p a prime greater than 2.

Alternative solution: Let p be a prime such that a − b = p and let
ab = k2. We have (b + p)b = k2; gcd(b, b + p) = gcd(b, p) is equal either to
1 or p.

(1) gcd(b, b + p) = p. Let b = b1p. Then p2b1(b1 + 1) = k2, b1(b1 + 1) = m2,
this equation has no solutions.

(2) gcd(b, b + p) = 1. Then
{

b = u2

b + p = v2
⇒ p = u2 − v2 = (u − v)(u + v) ⇒

⇒ u − v = 1, u + v = p ⇒

⇒ a =

(

p + 1

2

)2

, b =

(

p − 1

2

)2

;

where p must be an odd prime.

17. All the positive divisors of a positive integer n are stored into an array
in increasing order. Mary has to write a program which decides for an
arbitrarily chosen divisor d > 1 whether it is a prime. Let n have k divisors
not greater than d. Mary claims that it suffices to check divisibility of d by
the first dk/2e divisors of n: if a divisor of d greater than 1 is found among
them, then d is composite, otherwise d is prime. Is Mary right?

Solution: Yes, Mary is right.

Let d > 1 be a divisor of n.

Suppose Mary’s program outputs “composite” for d. That means it has
found a divisor of d greater than 1. Since d > 1, the array contains at least
2 divisors of d: 1 and d. Thus Mary’s program does not check divisibility of
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d by d (the first half gets complete before reaching d) which means that the
divisor found lays strictly between 1 and d. Hence d is composite indeed.

Suppose now d being composite. Let p be its smallest prime divisor; then
d
p
≥ p or, equivalently, d ≥ p2. As p is a divisor of n, it occurs in the array.

Let a1, . . . , ak all divisors of n smaller than p. Then pa1, . . . , pak are less
than p2 and hence less than d. As a1, . . . , ak are all relatively prime with p,
all the numbers pa1, . . . , pak divide n. The numbers a1, . . . , ak, pa1, . . . , pak

are pairwise different by construction. Thus there are at least 2k+1 divisors
of n not greater than d. So Mary’s program checks divisibility of d by at
least k + 1 smallest divisors of n, among which it finds p, and outputs
“composite”.

18. Every integer is colored with exactly one of the colors blue, green, red,

yellow. Can this be done in such a way that if a, b, c, d are not all 0 and
have the same color, then 3a − 2b 6= 2c − 3d?

Solution: The answer is yes. A coloring with the required property can be
defined as follows. For an integer k let k∗ be the integer uniquely defined
by k = 5m · k∗, where m is a nonnegative integer and 5 6 |k∗. Two integers
k1, k2 receive the same color if and only if k∗

1 ≡ k∗

2 (mod 5).

Assume that 3a − 2b = 2c − 3d, i.e. 3a − 2b − 2c + 3d = 0. Dividing both
sides by the largest power of 5 which simultaneously divides a, b, c, d, we
obtain

3 · 5A · a∗ − 2 · 5B · b∗ − 2 · 5C · c∗ + 3 · 5D · d∗ = 0,

where A, B, C, D are nonnegative integers at least one of which is equal to
0. The above equality implies

3(5A · a∗ + 5B · b∗ + 5C · c∗ + 5D · d∗) ≡ 0 (mod 5).

If a, b, c, d all had the same color, then a∗ ≡ b∗ ≡ c∗ ≡ d∗ 6≡ 0 (mod 5)
would hold. This implies

5A + 5B + 5C + 5D ≡ 0 (mod 5)

which is impossible since at least one of the numbers A, B, C, D is equal to
0.

19. Let a and b be positive integers. Prove that if a3 + b3 is the square of an
integer, then a + b is not a product of two different prime numbers.

Solution: Suppose a + b = pq, where p 6= q are two prime numbers. We
may assume that p 6= 3. Since a3 + b3 = (a + b)(a2 − ab + b2) is a square,
the number a2 − ab + b2 = (a + b)2 − 3ab must be divisible by p and q, and
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hence 3ab must be divisible by p and q. But p 6= 3, so p|a or p|b; but p|a+b,
so p|a and p|b: a = pk, b = p` for some integers k, `. Notice that q = 3,
since otherwise, repeating the above argument, we would have q|a, q|b and
a + b > pq). So we have

3p = a + b = p(k + `)

and we conclude that a = p, b = 2p or a = 2p, b = p. Then a3 + b3 = 9p3

is obviously not a square, a contradiction.

20. Let n be a positive integer such that the sum of all positive divisors of
n (except n) plus the number of these divisors is equal to n. Prove that
n = 2m2 for some integer m.

Solution: Let t1, t2, . . . , ts be all potitive odd divisors of n, 2k be the
maximal power of 2 that divides n. Then the full list of divisors of n is the
following:

t1, . . . , ts, 2t1, . . . , 2ts, . . . 2kt1, . . . , 2kts .

Hence,

2n = (2k+1 − 1)(t1 + t2 + . . . + ts) + (k + 1)s − 1 .

The right hand side can be even only if both k and s are odd. In this case
the number n/2k has odd number of divisors and therefore it is equal to a
perfect square.
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